A. | [$\frac{3}{5}$,5] | B. | [$\sqrt{2}$,$\sqrt{5}$] | C. | [$\frac{3\sqrt{5}}{5}$,$\sqrt{5}$] | D. | [$\sqrt{2}$,$\frac{3\sqrt{5}}{5}$] |
分析 向量$\overrightarrow{a}$,$\overrightarrow$是單位向量,$\overrightarrow{a}$$•\overrightarrow$=0,取$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1).設(shè)$\overrightarrow{c}$=(x,y)=$\overrightarrow{OP}$,根據(jù)|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,可得$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=$\sqrt{5}$,設(shè)A(1,0),B(0,2).則|AB|=$\sqrt{5}$,可得點(diǎn)P在線段AB上.可得y=2-2x(0≤x≤1).代入|$\overrightarrow{c}$+$\overrightarrow{a}$$-\overrightarrow$|=$\sqrt{5{x}^{2}-2x+2}$=$\sqrt{5(x-\frac{1}{5})^{2}+\frac{9}{5}}$=f(x),利用二次函數(shù)的單調(diào)性即可得出.
解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow$是單位向量,$\overrightarrow{a}$$•\overrightarrow$=0,
取$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1).
設(shè)$\overrightarrow{c}$=(x,y)=$\overrightarrow{OP}$,
∵|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,
∴$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=$\sqrt{5}$,
設(shè)A(1,0),B(0,2).
則|AB|=$\sqrt{5}$,
因此點(diǎn)P在線段AB上.
∴$\frac{x}{1}+\frac{y}{2}$=1,
可得y=2-2x(0≤x≤1).
則|$\overrightarrow{c}$+$\overrightarrow{a}$$-\overrightarrow$|=$\sqrt{(x+1)^{2}+(y-1)^{2}}$=$\sqrt{(x+1)^{2}+(1-2x)^{2}}$=$\sqrt{5{x}^{2}-2x+2}$=$\sqrt{5(x-\frac{1}{5})^{2}+\frac{9}{5}}$=f(x),
$f(\frac{1}{5})$=$\frac{3\sqrt{5}}{5}$為最小值,
由f(0)=$\sqrt{2}$,f(1)=$\sqrt{5}$,可得最大值為$\sqrt{5}$.
∴f(x)∈$[\frac{3\sqrt{5}}{5},\sqrt{5}]$.
故選:C.
點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算性質(zhì)、二次函數(shù)的單調(diào)性、直線方程,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{39}}{3}$ | C. | $\frac{26\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com