14.函數(shù)y=1-2x-$\frac{3}{x}$(x<0)的最小值為1+2$\sqrt{6}$.

分析 由題意可得-x>0,可得y=1-2x-$\frac{3}{x}$=1+(-2x)+(-$\frac{3}{x}$),由基本不等式可得.

解答 解:∵x<0,∴-x>0,
∴y=1-2x-$\frac{3}{x}$=1+(-2x)+(-$\frac{3}{x}$)
≥1+2$\sqrt{(-2x)(-\frac{3}{x})}$=1+2$\sqrt{6}$
當(dāng)且僅當(dāng)-2x=-$\frac{3}{x}$即x=-$\frac{\sqrt{6}}{2}$時取等號.
故答案為:1+2$\sqrt{6}$.

點(diǎn)評 本題考查基本不等式求最值,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x3+x-3在(-∞,+∞)上單調(diào)增加,則方程x3+x-3=0的一個根的區(qū)間是( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若logmn=-1,則m+3n的最小值為(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$是單位向量,若$\overrightarrow{a}$$•\overrightarrow$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{c}$+$\overrightarrow{a}$$-\overrightarrow$|的取值范圍是( 。
A.[$\frac{3}{5}$,5]B.[$\sqrt{2}$,$\sqrt{5}$]C.[$\frac{3\sqrt{5}}{5}$,$\sqrt{5}$]D.[$\sqrt{2}$,$\frac{3\sqrt{5}}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U=R,集合M={x|ln(1-x)<0},N={x|$\frac{\sqrt{2}}{2}$<2x<4},則(∁UM)∩N=( 。
A.{x|-$\frac{1}{2}$<x≤0}B.{x|-$\frac{1}{2}$<x≤0或1≤x<2}C.{x|-1<x≤0}D.{x|-1<x≤0或1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{a}$,$\overrightarrow$為平面上的兩個向量,p:$\overrightarrow{a}$=0或$\overrightarrow$=$\overrightarrow{0}$,q:|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)3<($\frac{1}{3}$)x<27,則正確的是(  )
A.{x|-1<x<3}B.{x|x<-1或x>3}C.{x|-3<x<-1}D.{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若a>0,b>0,且$\frac{1}{2a+b}$+$\frac{1}{b+1}$=1,則a+2b的最小值為$\frac{1}{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx$,若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,所得圖象對應(yīng)函數(shù)為y=g(x),則( 。
A.y=g(x)的圖象關(guān)于直線$x=-\frac{π}{3}$對稱B.y=g(x)圖象關(guān)于原點(diǎn)對稱
C.y=g(x)的圖象關(guān)于點(diǎn)$({-\frac{π}{3},0})$對稱D.y=g(x)圖象關(guān)于y軸對稱

查看答案和解析>>

同步練習(xí)冊答案