分析 (Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),得到f′(-1)=0,解出a的值即可;
(Ⅱ)先求出函數(shù)f(x)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值.
解答 解:(Ⅰ)f′(x)=3x2-3a=3(x2-a),
∵f(x)在x=-1處取得極大值,
∴f′(-1)=3×(-1)2-3a=0,解得:a=1;
(Ⅱ)由(Ⅰ)得:f(x)=x3-3x-1,f′(x)=3x2-3=0,解得:x=±1,
y,y′隨x的變化情況如下表:
x | -3 | (-3,-1) | -1 | (-1,1) | 1 | (1,2) | 2 |
f′(x) | + | 0 | - | 0 | + | ||
f(x) | -19 | 1 | -3 | 1 |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 4 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com