分析 由PDB為圓O的割線(xiàn),PA為圓的切線(xiàn),由切割線(xiàn)定理,結(jié)合PD=2,BD=6易得PA長(zhǎng),由∠ABC=45°結(jié)合弦切角定理,根據(jù)PE長(zhǎng)求出AE長(zhǎng)及ED,DB長(zhǎng),再根據(jù)相交弦定理可求出CE,進(jìn)而得到答案.
解答 解:∵PD=2,BD=6,∴PB=PD+BD=8,
由切割線(xiàn)定理得PA2=PD•PB=16,
∴PA=4,
又∵PE=PA,∴PE=4,
又∠PAC=∠ABC=45°,
∴AE=4$\sqrt{2}$,
又DE=PE-PD=2,BE=BD-DE=4,
由相交弦定理可得:AE•CE=BE•ED=8,
∴CE=$\sqrt{2}$,
∴AC=AE+CE=5$\sqrt{2}$,
故答案:$5\sqrt{2}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是與圓相關(guān)的比例線(xiàn)段,根據(jù)已知條件求出與圓相關(guān)線(xiàn)段的長(zhǎng),構(gòu)造方程組,求出未知線(xiàn)段是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,1) | B. | [0,2] | C. | [-2,2) | D. | [-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com