7.函數(shù)f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上存在極值,求實數(shù)m的取值范圍;
(2)求證:當x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

分析 (1)求出f(x)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件可得a=1,求導(dǎo)數(shù),求單調(diào)區(qū)間和極值,令m<1<m+1,解不等式即可得到取值范圍;
(2)不等式$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$即為$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,令g(x)=$\frac{(x+1)(lnx+1)}{x}$,通過導(dǎo)數(shù),求得$\frac{g(x)}{e+1}$>$\frac{2}{e+1}$,令h(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,運用導(dǎo)數(shù)證得h(x)<h(1)=$\frac{2}{e+1}$,原不等式即可得證.

解答 解:(1)∵f′(x)=$\frac{1-a-lnx}{{x}^{2}}$,
f(x)在點(e,f(e))處的切線斜率為-$\frac{a}{{e}^{2}}$,
由切線與直線e2x-y+e=0垂直,
可得f′(e)=-$\frac{1}{{e}^{2}}$,即有-$\frac{a}{{e}^{2}}$=-$\frac{1}{{e}^{2}}$
解得得a=1,
∴f(x)=$\frac{1+lnx}{x}$,f′(x)=-$\frac{lnx}{{x}^{2}}$(x>0)
當0<x<1,f′(x)>0,f(x)為增函數(shù);
當x>1時,f′(x)<0,f(x)為減函數(shù).
∴x=1是函數(shù)f(x)的極大值點                             
又f(x)在(m,m+1)上存在極值
∴m<1<m+1   即0<m<1
故實數(shù)m的取值范圍是(0,1);                              
(2)不等式$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$
即為$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$                       
令g(x)=$\frac{(x+1)(lnx+1)}{x}$         
則g′(x)=$\frac{x-lnx}{{x}^{2}}$,
再令φ(x)=x-lnx,則φ′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
∵x>1∴φ′(x)>0,φ(x)在(1,+∞)上是增函數(shù),
∴φ(x)>φ(1)=1>0,g′(x)>0,
∴g(x)在(1,+∞)上是增函數(shù),
∴x>1時,g(x)>g(1)=2   
故$\frac{g(x)}{e+1}$>$\frac{2}{e+1}$.
令h(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,則h′(x)=$\frac{2{e}^{x-1}(1-{e}^{x})}{(x{e}^{x}+1)^{2}}$,
∵x>1∴1-ex<0,h′(x)<0,即h(x)在(1,+∞)上是減函數(shù)
∴x>1時,h(x)<h(1)=$\frac{2}{e+1}$,
所以$\frac{g(x)}{e+1}$>h(x),即$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率、單調(diào)區(qū)間和極值,同時考查構(gòu)造函數(shù)求導(dǎo)數(shù),判斷單調(diào)性,運用單調(diào)性證明不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求數(shù)列$\frac{1}{1×3}$,$\frac{1}{3×5}$,$\frac{1}{5×7}$,…$\frac{1}{(2n-1)(2n+1)}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用誘導(dǎo)公式求下列三角值:
(1)cos(-$\frac{17π}{4}$);                          
(2)sin(-1574°);
(3)sin(-2160°52′);
(4)cos(-1751°36′)
(5)cos1615°8′;
(6)sin(-$\frac{26}{3}π$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在正項數(shù)列{an}中,a1=3,an2=an-1+2(n=2,3,…)
(1)求a2,a3的值,判斷an與2的大小關(guān)系并證明;
(2)求證:|an-2|<$\frac{1}{4}$|an-1-2|(n=2,3,…);
(3)求證:|a1-2|+|a2-2|+…+|an-2|<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知△ABC的三邊a,b,c所對角分別為A,B,C,且$\frac{sinA}{a}=\frac{sin\frac{B}{2}}$,則cosB的值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,四邊形AA1C1C是邊長為2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.
(Ⅰ)求證:A1B⊥AC1
(Ⅱ)已知點E是AB的中點,BC=AC,求直線EC1與平面ABB1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|mx|-|x-n|(0<n<1+m),若關(guān)于x的不等式f(x)<0的解集中的整數(shù)恰有3個,則實數(shù)m的取值范圍為( 。
A.3<m<6B.1<m<3C.0<m<1D.-1<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,A為切點,PB交AC于點E,交圓O于點D,若PE=PA,∠ABC=45°,且PD=2,BD=6,則AC=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)P為雙曲線C:x2-y2=1上一點,F(xiàn)1、F2分別為雙曲線C的左右焦點,若cos∠F1PF2=$\frac{1}{3}$,則△PF1F2的外接圓的半徑為( 。
A.$\frac{3}{2}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

同步練習(xí)冊答案