已設(shè)函數(shù)f(x)=2cos2x+2sinxcosx+m(x∈R)。
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[0,],是否存在實(shí)數(shù)m,使函數(shù)f(x)的值域恰為?若存在,請求出m的取值;若不存在,請說明理由。
解:(1)∵

∴函數(shù)f(x)的最小正周期T=π


故f(x)的單調(diào)遞減區(qū)間為。
(2)假設(shè)存在實(shí)數(shù)m符合題意




又∵
解得
∴存在實(shí)數(shù)
使函數(shù)f(x)的值域恰為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(a-1)ln(x-1)+x-(4a-2)lnx,其中實(shí)數(shù)a為常數(shù).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)函數(shù)y=f(ex)有極大值點(diǎn)和極小值點(diǎn)分別為x1、x2,且x2-x1>ln2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實(shí)常數(shù)a的取值范圍;
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知函數(shù)f(x)=2+
1
x
.?dāng)?shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時(shí),得到不同的數(shù)列{an},如當(dāng)a=1時(shí),得到無窮數(shù)列1,3,
7
3
17
7
,…;當(dāng)a=-
1
2
時(shí),得到有窮數(shù)列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)設(shè)數(shù)列{bn}滿足b1=-
1
2
,bn=f(bn+1)(n∈N*)
,求證:不論a取{bn}中的任何數(shù),都可以得到一個有窮數(shù)列{an};
(3)求a的取值范圍,使得當(dāng)n≥2時(shí),都有
7
3
an
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,數(shù)列{an}滿足an=f(an-1)(n≥2,n?N*).若a1=
3
5
,數(shù)列{bn}滿足bn=
1
an-1

(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=(2bn+6)•2n-1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-x≤0,x∈R},設(shè)函數(shù)f(x)=2-x+a(x∈A)的值域?yàn)锽,
(1)當(dāng)a=0時(shí),求A∩B;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案