分析 根據(jù)△≥0求出m的取值范圍,再由根與系數(shù)的關(guān)系求出函數(shù)u=(α-1)2-(β-1)2的最大值與最小值即可.
解答 解:∵α、β為方程的兩個(gè)實(shí)數(shù)根,
∴△=4m2-4(3+4m2-6)≥0,
解得-1≤m≤1;
設(shè)u=(α-1)2-(β-1)2=(α+β)2-2(α+β)-2αβ+2,
且α+β=2m,αβ=4m2-3,
∴u=4m2-4m-2(4m2-3)+2
=-4m2-4m+8
=-4${(m+\frac{1}{2})}^{2}$+9,
又∵-1≤m≤1,
∴當(dāng)m=-$\frac{1}{2}$時(shí),u取得最大值umax=9,
m=1時(shí),u取得最小值umin=0.
點(diǎn)評(píng) 本題考查了一元二次方程根與系數(shù)的關(guān)系以及函數(shù)的最值問題,也考查了轉(zhuǎn)化思想的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{7π}{12}$ | |||
Asin(ωx+φ) | 2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32(5) | B. | 23(5) | C. | 21(5) | D. | 12(5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1+\sqrt{3}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{2+\sqrt{3}}{2}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com