分析 (1)根據(jù)等差數(shù)列的通項(xiàng)公式先求出Sn=an-1,然后根據(jù)項(xiàng)和和之間的關(guān)系即可求數(shù)列{an}的通項(xiàng)公式;
(2)求出A,利用作差法進(jìn)行比較即可得到結(jié)論.
解答 解:(1)∵數(shù)列{logaSn}是首項(xiàng)為0,公差為1的等差數(shù)列,
∴l(xiāng)ogaSn=0+n-1=n-1,
則Sn=an-1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=an-1-an-2=(a-1)an-2,
當(dāng)n=1時(shí),logaS1=0,即S1=a1=1,
即數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{1,}&{n=1}\\{(a-1){a}^{n-2},}&{n≥2}\end{array}\right.$;
(2)∵an與an+2的等差中項(xiàng)為A,
∴A=$\frac{{a}_{n}+{a}_{n+2}}{2}$,
當(dāng)n=1時(shí),A-an+1=$\frac{{a}_{1}+{a}_{3}}{2}$-a2=$\frac{{a}^{2}-3a+3}{2}$=$\frac{1}{2}$[(a-$\frac{3}{2}$)2+$\frac{3}{4}$]$≥\frac{3}{8}$>0,此時(shí)A>an+1.
當(dāng)n≥2時(shí),A-an+1=$\frac{{a}_{n}+{a}_{n+2}}{2}$-an+1=$\frac{(a-1){a}^{n-2}+(a-1){a}^{n}}{2}$-(a-1)an-1
=$\frac{(a-1){a}^{n-2}({a}^{2}-2a+1)}{2}$=$\frac{(a-1)^{3}{a}^{n-2}}{2}$.
若0<a<1,則A-an+1<0.
綜上可得,當(dāng)n=1時(shí),A>an+1;
當(dāng)n≥2時(shí),若0<a<1,則A<an+1,
點(diǎn)評(píng) 本題主要考查數(shù)列的通項(xiàng)公式,結(jié)合等差數(shù)列的通項(xiàng)公式求出數(shù)列的前n項(xiàng)和是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$>f(1) | B. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$<f(1) | ||
C. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$≥f(1) | D. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$≤f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 5 | C. | $\frac{28}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 135°,-1 | B. | 135°,1 | C. | 45°,-1 | D. | 45°,1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com