7.函數(shù)y=$\sqrt{4-2x}$+log2(x-1)的定義域是(1,2].

分析 根據(jù)二次根式的性質(zhì)以及對數(shù)對數(shù)的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:$\left\{\begin{array}{l}{4-2x≥0}\\{x-1>0}\end{array}\right.$,
解得:1<x≤2,
故函數(shù)y=$\sqrt{4-2x}$+log2(x-1)的定義域是(1,2].
故答案為:(1,2].

點評 本題考查了求函數(shù)的定義域問題,考查二次根式以及對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題錯誤的是( 。
A.“a=$\frac{1}{e}$”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為減函數(shù)”的充分不必要條件
B.命題“若x2-3x+2=0,則x=1”的逆否命題為“x≠1,則x2-3x+2≠0”
C.在回歸分析中,求得的線性回歸直線至少過一個樣本點
D.若命題p:?n∈N,2n>1000,則非p:?n∈N,2n≤1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在空間中,若直線a與b無公共點,則直線a、b的位置關(guān)系是平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若3名學(xué)生報名參加數(shù)、理、化、生四科競賽,每人選報1項,則不同的報名方式有64種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.對于復(fù)數(shù)z1=m+i,z2=m+(m-2)i(i為虛數(shù)單位,m為實數(shù)).
(1)若z2在復(fù)平面內(nèi)對應(yīng)的點位于第四象限,求m的取值范圍;
(2)若z1,z2滿足z2=z1•ni,求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=loga($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{a}^{x}-1}$+1(a>0,a≠1),若f(sin($\frac{π}{6}$-α))=$\frac{1}{3}$,則f(cos(α-$\frac{2π}{3}$))=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知長方體ABCD-A1B1C1D1的體積為V,點M、N分別為AB、BB1中點,三棱錐M-DB1N的體積為V1,則$\frac{V1}{V}$=( 。
A.$\frac{1}{36}$B.$\frac{1}{24}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知函數(shù)f(x)=|x2-4x+3|,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)=x2-4|x|+3,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=1n(x+1)+ax2-x(a∈R).
(1)當(dāng)$a=\frac{1}{4}$時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(2)若對任意實數(shù)b∈(1,2),當(dāng)x∈(-1,b]時,函數(shù)f(x)的最大值為f(b),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案