分析 根據(jù)數(shù)列的前n項和通項公式之間的關(guān)系,即可得到結(jié)論.
解答 解:當n=1時,${S_1}={a_1}=\frac{1}{6}{a_1}({a_1}+3)$,解得a1=3;
當n≥2時,${a_n}={S_n}-{S_{n-1}}=\frac{1}{6}[{a_n}({a_n}+3)-{a_{n-1}}({a_{n-1}}+3)]$,
整理,得(an+an-1)(an-an-1-3)=0.
因為an>0,所以an-an-1-3=0,即an-an-1=3,
所以{an}是以3為首項,3為公差的等差數(shù)列,所以an=3+3(n-1)=3n,即an=3n.
故答案為:an=3n.
點評 本題主要考查數(shù)列通項公式的求解,根據(jù)遞推關(guān)系判斷數(shù)列是等差數(shù)列是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-2x | B. | y=3x | C. | y=-3x | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(-1,0) | D. | (0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a1a2>0,則a2a3>0 | B. | 若a1a3<0,則a1a2<0 | ||
C. | 若a1<a2,則a22<a1a3 | D. | 若a1≥a2,則a22≥a1a3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M∩N=N | B. | M∩(∁UN)=∅ | C. | M∪N=U | D. | M⊆(∁UN) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2015-2016學年江蘇泰興中學高二上學期期末數(shù)學(理)試卷(解析版) 題型:填空題
設為拋物線上的兩動點,且線段的長為6,為線段的中點,則點到軸的最短距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com