5.已知冪函數(shù)f(x)=xa的圖象過點(2,$\sqrt{2}$),則f($\frac{1}{4}$)=( 。
A.-$\frac{1}{2}$B.2C.$\frac{1}{2}$D.3

分析 冪函數(shù)f(x)=xa的圖象過點(2,$\sqrt{2}$),求得α的值,可得函數(shù)的解析式,從而求得f($\frac{1}{4}$)的值.

解答 解:∵冪函數(shù)f(x)=xa的圖象過點(2,$\sqrt{2}$),
∴2α=$\sqrt{2}$=${2}^{\frac{1}{2}}$,∴α=$\frac{1}{2}$,
∴f(x)=${x}^{\frac{1}{2}}$,
∴f($\frac{1}{4}$)=${(\frac{1}{4})}^{\frac{1}{2}}$=$\frac{1}{2}$,
故選:C.

點評 本題主要考查用待定系數(shù)法求函數(shù)的解析式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=2asinA,則A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等邊三角形ABC中,點P為線段AB上一點,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$(0≤λ≤1).
(1)若等邊三角形邊長為6,且λ=$\frac{1}{3}$,求|${\overrightarrow{CP}}$|;
(2)若$\overrightarrow{AP}$=$\frac{3}{5}$$\overrightarrow{PB}$,求λ的值
(3)若$\overrightarrow{CP}$•$\overrightarrow{AB}$≥$\overrightarrow{PA}$•$\overrightarrow{PB}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,分別根據(jù)下列條件解三角形,其中有兩解的是(  )
A.a=7,b=14,A=30°B.b=4,c=5,B=30°C.b=25,c=3,C=150°D.a=$\sqrt{6}$,b=$\sqrt{3}$,B=60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知點A(1,1)和坐標原點O,若點B(x,y)滿足$\left\{\begin{array}{l}{x+2y≥8}\\{2x-y+3≥0}\\{x-y≤3}\end{array}\right.$,則x2+y2-2x-2y的最小值是( 。
A.$\sqrt{5}$-2B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.計算下列各題:
(1)lg4+lg25-$\sqrt{\frac{25}{9}}$+(4-π)0;      
(2)$\frac{lg32-lg4}{lg2}$+27${\;}^{\frac{2}{3}}$+256${\;}^{\frac{3}{4}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設有限集合A={a1,a2,..,an},則a1+a2+…+an叫做集合A的和,記作SA,若集合P={x|x=2n-1,n∈N*,n≤4},集合P的含有3個元素的全體子集分別記為P1,P2,…,Pk,則P1+P2+…+Pk=48.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知U={x|x>-1},A={x||x-2|<1},則∁UA={x|-1<x≤1或x≥3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知$sinθ+cosθ=\frac{1}{2}$,其中θ在第二象限,則cosθ-sinθ=( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{7}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步練習冊答案