分析 (Ⅰ)通過(guò)首項(xiàng)和公比表示出數(shù)列{an}的前三項(xiàng),利用4a1,3a2,2a3成等差數(shù)列列出方程,進(jìn)而可求出公比,利用等比數(shù)列的通項(xiàng)公式計(jì)算即得結(jié)論;
(Ⅱ)通過(guò)(I)裂項(xiàng)可知bnbn+1=$\frac{1}{n}$-$\frac{1}{n+1}$,進(jìn)而并項(xiàng)相加即得結(jié)論.
解答 解:(Ⅰ)依題意,6q=4+2q2,
解得:q=2或q=1(舍),
∴數(shù)列{an}是首項(xiàng)為1、公比為2的等比數(shù)列,
∴其通項(xiàng)公式an=2n-1;
(Ⅱ)由(I)可知,Sn=$\frac{1-{2}^{n}}{1-2}$=2n-1,
∴bn=$\frac{1}{lo{g}_{2}({S}_{n}+1)}$=$\frac{1}{lo{g}_{2}({2}^{n}-1+1)}$=$\frac{1}{n}$,
∵bnbn+1=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴并項(xiàng)相加可知b1b2+b2b3+…+bn-1bn=$\frac{n}{n+1}$=$\frac{2015}{2016}$,
解得:n=2015.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈(-∞,-3)∪(3,+∞),x${\;}_{0}^{2}$+2x0+1≤0 | B. | ?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0 | ||
C. | ?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0 | D. | ?x∈[-3,3],x2+2x+1>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | (-$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{3}$,$\frac{4}{3}$) | D. | (-$\frac{1}{3}$,$\frac{4}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c>b>a | B. | a>c>b | C. | a>b>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{15}{8}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com