1.下列函數(shù)為奇函數(shù)的是( 。
A.y=x2B.y=2sinxC.y=2cosxD.y=2lnx

分析 直接利用基本函數(shù)的奇偶性判斷選項即可.

解答 解:y=x2,y=2cosx是偶函數(shù),y=2sinx是奇函數(shù),y=2lnx是非奇非偶函數(shù).
故選:B.

點(diǎn)評 本題考查函數(shù)的奇偶性的判斷,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{3π}{4}$,cosB=$\frac{3\sqrt{10}}{10}$,AD為BC邊上的中線,且AD=1.
(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)不等式組$\left\{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}\right.$所表示的平面區(qū)域為M,若z=2x-y+2a+b(a>0,b>0)的最大值為3,則$\frac{1}{a}$+$\frac{1}$的最小值為3$+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)圖數(shù)f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)探究發(fā)現(xiàn),任意一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”,且該“拐點(diǎn)”也是該函數(shù)的對稱中心,若f(x)=2x3-3x2+x+2,則f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=( 。
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=Asin(ωx-φ)+1(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈[0,$\frac{π}{2}$],且f($\frac{α}{2}$)=1+$\frac{\sqrt{3}}{2}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在正方形ABCD內(nèi)任取一點(diǎn)P,求∠APB>120°的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=$\frac{{x}^{2}+6x+1}{{x}^{2}+1}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=log2($\frac{2}{1-x}$+a)是奇函數(shù),則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.袋中有大小完全相同的2個紅球和3個黑球,不放回地摸出兩球,設(shè)“第一次摸出紅球”為事件A,“摸得的兩球同色”為事件B,則概率P(B|A)為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案