分析 求導(dǎo)f′(x)=ex-2,從而可得f(x)的單調(diào)性,從而由單調(diào)性確定函數(shù)的極值即可.
解答 解:∵f(x)=ex-2x+a,
∴f′(x)=ex-2,
∴當(dāng)x∈(-∞,ln2)時,f′(x)<0,
故f(x)在(-∞,ln2)上單調(diào)遞減,
當(dāng)x∈(ln2,+∞)時,f′(x)>0,
故f(x)在(ln2,+∞)上單調(diào)遞增,
而f(0)=1+a,f(ln2)=2-2ln2+a,$\underset{lim}{x→+∞}$f(x)=+∞;
故2-2ln2+a<0<1+a,
故a∈(-1,2ln2-2).
故答案為:(-1,2ln2-2).
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類討論的思想應(yīng)用,同時考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=-4y | B. | x2=12y | C. | x2=-4y或x2=12y | D. | 以上都不是 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{7}{5}$ | C. | -$\frac{1}{5}$ | D. | -$\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有95%的把握有關(guān) | B. | 有99%的把握有關(guān) | ||
C. | 沒有理由說它們有關(guān) | D. | 不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com