7.已知角α的終邊經(jīng)過(guò)點(diǎn)(3a,-4a)(a<0),則sinα+cosα等于( 。
A.$\frac{1}{5}$B.$\frac{7}{5}$C.-$\frac{1}{5}$D.-$\frac{7}{5}$

分析 根據(jù)題意可得r=-5a,再求得sinα和cosα的值,可得sinα+cosα 的值.

解答 解:∵角α的終邊經(jīng)過(guò)點(diǎn)(3a,-4a)(a<0),則r=-5a,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=-$\frac{3}{5}$,
∴sinα+cosα=$\frac{1}{5}$,
故選:A.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,注意a的符號(hào),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知集合A={x|-1<x<2},B={0,1,2}.
(1)求A∩B,A∪B;
(2)設(shè)函數(shù)f(x)=log3(x-1)的定義域維護(hù)C,求(∁RC)∩A;
(3)設(shè)集合M={x|a<x≤a+2},且M⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)、g(x)滿(mǎn)足f(x)=axg(x),且f′(x)g(x)<f(x)g′(x),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若有窮數(shù)列{$\frac{f(n)}{g(n)}$}(n∈N*)的前n項(xiàng)和等于$\frac{31}{32}$,則n等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線(xiàn)y=x3+sinx在點(diǎn)O(0,0)處切線(xiàn)方程是( 。
A.y=xB.y=2xC.y=3xD.y=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=ex-2x+a,若關(guān)于x的方程f(x)=0有兩個(gè)不同正根,則實(shí)數(shù)a的取值范圍是(-1,2ln2-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的圖象的一部分如圖所示,則f(x)解析式是( 。
A.f(x)=2sin($\frac{1}{2}$x-$\frac{π}{4}$)B.f(x)=2sin($\frac{1}{2}$x+$\frac{3π}{4}$)C.f(x)=2sin(2x-$\frac{π}{4}$)D.f(x)=2sin(2x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線(xiàn)y=kx+m(m≠0)與圓x2+y2=169有公共點(diǎn),且公共點(diǎn)的橫坐標(biāo)和縱坐標(biāo)均為整數(shù),那么這樣的直線(xiàn)共有( 。
A.60條B.66條C.72條D.78條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=cos2x+asinx在區(qū)間(0,nπ)(n∈N*)內(nèi)恰有9個(gè)零點(diǎn),則實(shí)數(shù)a的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$\overrightarrow a=(1\;,\;0\;,\;1)$,$\overrightarrow b=(t\;,\;1\;,\;1)$,$\overrightarrow a⊥\overrightarrow b$,則t=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案