19.已知f(x)=ax4+bx2-x+m,f(2)=1,則f(-2)=(  )
A.5B.0C.3D.-2

分析 由已知得f(2)=16a+4b-2+m=1,由此能求出f(-2)的值.

解答 解:∵f(x)=ax4+bx2-x+m,f(2)=1,
∴f(2)=16a+4b-2+m=1,
∴f(-2)=16a+4b+2+m=(16a+4b-2+m)+4=1+4=5.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.關(guān)于x的方程9x+(a-2)3x+4=0有解,則實數(shù)a的取值范圍是( 。
A.(-2,+∞)B.(-∞,-2]C.(-∞,-4)D.[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知M(-1,2),N(2,-2),若動點P(x,y)滿足|PM|+|PN|=5,則$\frac{y+2}{x}$的取值范圍為(-∞,-4]∪[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以原點O為極點,x軸張半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=asinθ.
(Ⅰ)若a=2,求圓C的直角坐標方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長等于圓C的半徑長的$\sqrt{2}$倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-2ax+3)在(-∞,1)上為增函數(shù),則實數(shù)a的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.式子$\frac{lo{g}_{8}27}{lo{g}_{2}3}$的值為( 。
A.1B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若a>1,b>1,且lg(a+b)=lga+lgb,則$\frac{1}{a}+\frac{1}$=1,lg(a-1)+lg(b-1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.冪函數(shù)f(x)的圖象過點$({3,\root{3}{9}})$,則f(8)=( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x+y)=f(x)+f(y),當x>0時,f(x)<0,且f(1)=-2.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)求f(x)在區(qū)間[-2,2]上的最大值;
(Ⅲ)若a≥0,解關(guān)于x的不等式f(ax2)-2f(x)<f(ax)+4.

查看答案和解析>>

同步練習(xí)冊答案