已知函數(shù)f(x)=
1
22x-1

(1)求函數(shù)f(x)的定義域、值域;
(2)若x∈[1,
9
2
],求函數(shù)f(x)的值域.
考點:函數(shù)的值域,函數(shù)的定義域及其求法
專題:常規(guī)題型
分析:本題屬于函數(shù)題,(1)直接求函數(shù)的定義域、值域;(2)已知自變量的取值范圍,利用不等式,即可求出函數(shù)的值域.
解答: 解:(1)∵函數(shù)f(x)=
1
22x-1

∴22x-1≠0,
∴x∈R.
∵22X-1>0,
∴y>0.
∴函數(shù)f(x)的定義域為R,值域為(0,+∞).
(2)∵1≤x≤
9
2
,
∴1≤2x-1≤8,
∴21≤22x-1≤28,
即2≤22x-1≤256,
1
256
1
22x-1
1
2
,
∴函數(shù)f(x)的值域為[
1
256
,
1
2
]
點評:本題考查了函數(shù)的定義域和值域的求法,重點是值域的求法,用到函數(shù)的單調(diào)性和不等式的知識,總體計算難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(x+
π
3
)sin(x+
π
2
),求它的最大最小值,并求出取得相應(yīng)最大最小值時的x值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-a(1-
1
x
),a∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的最小值為0,回答下列問題:
(。┣髮崝(shù)a的值;
(ⅱ)設(shè)A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)g(x)=xf(x)圖象上的兩點,且曲線g(x)在點T(t,g(t))處的切線與直線AB平行,求證:x1<t<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x-2
x2-2x+4
(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx+m,m∈R.
(1)已知函數(shù)f(x)在點(l,f(1))處與x軸相切,求實數(shù)m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的結(jié)論下,對于任意的0<a<b,證明:
f(b)-f(a)
b-a
1
a
-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(Ⅱ)若通過學(xué)校選拔測試的學(xué)生將代表學(xué)校參加市知識競賽,知識競賽分為初賽和復(fù)賽,初賽中每人最多有5次答題機會,累計答對3題或答錯3題即終止,答對3題者方可參加復(fù)賽.假設(shè)參賽者甲答對每一個題的概率都是
2
3
,求甲在初賽中答題個數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三邊分別是a、b、c,且a+b+c=3,求證:3≤a2+b2+c2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(
π
4
-α)=
4
5
π
4
<α<
π
2
,則cos(
4
+α)+cos(
π
4
+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y+1=0關(guān)于y=
1
2
x對稱的直線l′的方程是
 

查看答案和解析>>

同步練習(xí)冊答案