9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左、右焦點分別為F1,F(xiàn)2.G為橢圓上異于長軸端點的一點,若△GF1F2的面積為2,且其內(nèi)切圓半徑為2-$\sqrt{2}$.
(1)求橢圓C的方程;
(2)直線l:y=k(x-1)(k<0)與橢圓C相交于A、B兩點,點P(3,0),記直線PA,PB的斜率分別為k1、k2,當(dāng)$\frac{{k}_{1}{k}_{2}}{k}$取得最大值時,求直線l的方程.

分析 (Ⅰ)運用橢圓的離心率公式和三角形的面積求法,結(jié)合內(nèi)切圓的半徑和橢圓的定義,解方程可得a,c,再由a,b,c的關(guān)系,可得b,進(jìn)而得到橢圓方程;
(2)y=k(x-1)(k<0)代入橢圓方程可得,(1+2k2)x2-4k2x+2k2-4=0,設(shè)A(x1,y1),B(x2,y2),運用韋達(dá)定理和直線的斜率公式,結(jié)合基本不等式即可得到所求最大值,進(jìn)而得到所求直線的方程.

解答 解:(1)由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
${S}_{△G{F}_{1}{F}_{2}}$=$\frac{1}{2}$r(PF1+PF2+F1F2)=$\frac{1}{2}$×(2-$\sqrt{2}$)•(2a+2c)=2,
即為a+c=2+$\sqrt{2}$,
解得c=$\sqrt{2}$,a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{2}$,
即有橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1;
(2)直線l:y=k(x-1)(k<0)代入橢圓方程可得,
(1+2k2)x2-4k2x+2k2-4=0,
設(shè)A(x1,y1),B(x2,y2),
可得△=16k4-4(1+2k2)(2k2-4)>0,
即為4+6k2>0成立.
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-4}{1+2{k}^{2}}$,
即有$\frac{{k}_{1}{k}_{2}}{k}$=$\frac{{y}_{1}{y}_{2}}{k({x}_{1}-3)({x}_{2}-3)}$=$\frac{k({x}_{1}-1)({x}_{2}-1)}{({x}_{1}-3)({x}_{2}-3)}$
=$\frac{k({x}_{1}{x}_{2}+1-{x}_{1}-{x}_{2})}{{x}_{1}{x}_{2}+9-3({x}_{1}+{x}_{2})}$=$\frac{k(2{k}^{2}-4+1+2{k}^{2}-4{k}^{2})}{2{k}^{2}-4+9+18{k}^{2}-12{k}^{2}}$
=$\frac{-3k}{5+8{k}^{2}}$=$\frac{3}{\frac{5}{-k}+(-8k)}$≤$\frac{3}{2\sqrt{40}}$=$\frac{3\sqrt{10}}{40}$.
當(dāng)且僅當(dāng)-8k=-$\frac{5}{k}$,解得k=-$\frac{\sqrt{10}}{4}$.
即有$\frac{{k}_{1}{k}_{2}}{k}$取得最大值時,直線l的方程為y=-$\frac{\sqrt{10}}{4}$(x-1).

點評 本題考查橢圓的方程的求法,注意運用橢圓的定義和離心率公式,考查直線方程和橢圓方程聯(lián)立,運用韋達(dá)定理和直線的斜率公式,以及基本不等式求最值,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{2}{3}\sqrt{2}$,且內(nèi)切于圓x2+y2=9.
(1)求橢圓C的方程;
(2)過點Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M、N兩點,與y軸交于點R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,試判斷λ+μ是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若點M是以橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的短軸為直徑的圓在第一象限內(nèi)的一點,過點M作該圓的切線交橢圓E于P,Q兩點,橢圓E的右焦點為F2,則△PF2Q的周長是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知{an}是等差數(shù)列,公差d不為零,且a3+a9=a10-a8,則a5=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$滿足$f(x)=-f(x+\frac{π}{2}),f(0)=\frac{1}{2}$,則g(x)=2cos(ωx+φ)在區(qū)間$[0,\frac{π}{2}]$上的最大值為(  )
A.4B.$\sqrt{3}$C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)整數(shù)a使得關(guān)于x的一元二次方程5x2-5ax+26a-143=0的兩個根都是整數(shù),則a的值是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,D,E分別是AB,AC的中點,DM=$\frac{1}{3}$DE,若$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b.
(1)用a,b表示$\overrightarrow{BM}$;
(2)若N為線段BC上的點,且BN=$\frac{1}{3}$BC,利用向量方法證明:A,M,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{\sqrt{6}}{3}$,F(xiàn)1、F2為其左、右焦點,M為橢圓E上一點,且△MF1F2面積的最大值為4$\sqrt{2}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:y=x+m(m∈R)與橢圓E交于不同兩點A、B,且|AB|=3$\sqrt{2}$,P為直線y=2上一點,滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$lo{g}_{\frac{1}{3}}$(1-Sn+1)(n∈N*),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案