9.已知復(fù)數(shù)z滿足方程z2+3=0,則z•$\overline z$($\overline z$表示復(fù)數(shù)z的共扼復(fù)數(shù))的值是( 。
A.-3iB.3iC.-3D.3

分析 直接計(jì)算即可.

解答 解:∵z2+3=0,∴z=±$\sqrt{3}$i,
∴z•$\overline z$=-3i2=3,
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的相關(guān)知識(shí),注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.袋中有5個(gè)球,其中有彩色球2個(gè).甲、乙二人先后依次從袋中取球,每次取后不放回,規(guī)定先取出彩色球者獲勝.則甲獲勝的概率為$\frac{3}{5}$.(以整數(shù)比作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2$\sqrt{2}$,PA=2,$\overrightarrow{PE}$=2$\overrightarrow{EC}$.
(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)若直線PD與平面PBC所成角為$\frac{π}{6}$,求二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{4}$x2+cosx的圖象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+a}$.
(Ⅰ)證明:當(dāng)a=1,x>0時(shí),f(x)>0;
(Ⅱ)若a>1,討論f(x)在(0,+∞)上的單調(diào)性;
(Ⅲ)設(shè)n∈N*,比較$\frac{1}{2}+\frac{2}{3}+…+\frac{n}{n+1}$與n-ln(1+n)的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題“若|x|=1,則x=1”的否命題為若|x|≠1,則x≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)向量$\overrightarrow m$=(sin2ωx,cos2ωx),$\overrightarrow n$=(cosφ,sinφ),其中|φ|<$\frac{π}{2}$,ω>0,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的點(diǎn))為$P(\frac{π}{6},1)$,在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為$Q(\frac{5π}{12},0)$.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,角A′B′C的對(duì)邊分別是a′b′c′若f(C)=-1,$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,且a+b=2$\sqrt{3}$,求邊長c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知不存在整數(shù)x使不等式(ax-a2-4)(x-4)<0成立,則實(shí)數(shù)a的取值范圍為( 。
A.(0,+∞)B.(0,2]C.[1,2]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若不等式sin2θ-(2$\sqrt{2}$+$\sqrt{2}$a)sin(θ+$\frac{π}{4}$)-$\frac{2\sqrt{2}}{cos(θ-\frac{π}{4})}$>-3-2a對(duì)θ∈[0,$\frac{π}{2}$]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,3)B.(-∞,2$\sqrt{2}$)C.(2$\sqrt{2}$,3)D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案