分析 (1)運(yùn)用數(shù)列的通項(xiàng)和前n項(xiàng)和的關(guān)系:n=1時(shí),a1=S1,n>1時(shí),an=Sn-Sn-1,化簡(jiǎn)即可得到所求通項(xiàng);
(2)求得bn=$\frac{{a}_{n}+2}{{3}^{n+1}}$=$\frac{n}{{3}^{n}}$,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.
解答 解:(1)點(diǎn)(n,Sn)(n∈N•)在函數(shù)y=$\frac{3{x}^{2}}{2}$-$\frac{x}{2}$的圖象上,
可得Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n,
n=1時(shí),a1=S1=1;
n>1時(shí),an=Sn-Sn-1=$\frac{3}{2}$n2-$\frac{1}{2}$n-$\frac{3}{2}$(n-1)2+$\frac{1}{2}$(n-1)
=3n-2.對(duì)n=1也成立.
則數(shù)列{an}的通項(xiàng)公式為an=3n-2;
(2)bn=$\frac{{a}_{n}+2}{{3}^{n+1}}$=$\frac{n}{{3}^{n}}$,
前n項(xiàng)和為Tn=$\frac{1}{3}$+$\frac{2}{{3}^{2}}$+$\frac{3}{{3}^{3}}$+…+$\frac{n}{{3}^{n}}$,
$\frac{1}{3}$Tn=$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+$\frac{3}{{3}^{4}}$+…+$\frac{n}{{3}^{n+1}}$,
兩式相減可得,$\frac{2}{3}$Tn=$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$-$\frac{n}{{3}^{n+1}}$
=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n+1}}$=$\frac{1}{2}$(1-$\frac{1}{{3}^{n}}$)-$\frac{n}{{3}^{n+1}}$,
即有前n項(xiàng)和為Tn=$\frac{3}{4}$-$\frac{3+2n}{4•{3}^{n}}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列的通項(xiàng)和前n項(xiàng)和的關(guān)系,考查數(shù)列的求和方法:錯(cuò)位相減法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2,3,-1) | B. | (2,3,4,-1) | C. | (0,-1,2,-2) | D. | (0,-3,4,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | $\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (4,+∞) | C. | (-∞,-2)∪(4,+∞) | D. | (-2,4) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com