5.函數(shù)y=2sin($\frac{π}{6}$-2x)(其中x∈[-π,0])的單調(diào)遞增區(qū)間是(  )
A.$[{-π,-\frac{5π}{6}}]$B.$[{-\frac{π}{3},0}]$C.$[{-\frac{2π}{3},-\frac{π}{6}}]$D.$[{-\frac{π}{3},-\frac{π}{6}}]$

分析 由題意可知y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,當(dāng)k=-1時(shí),即可求得函數(shù)的單調(diào)遞增區(qū)間.

解答 解:y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,函數(shù)單調(diào)遞增,
解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,
x∈[-π,0],
∴當(dāng)k=-1時(shí),x∈[-$\frac{2π}{3}$,-$\frac{π}{6}$],
故答案選:C.

點(diǎn)評(píng) 本題考查正弦函數(shù)圖象及性質(zhì),考查正弦函數(shù)的單調(diào)性及單調(diào)區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=cos2x(x∈R),下面結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對(duì)稱(chēng)D.函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知tanθ=$\frac{4}{3}$,θ∈(0,$\frac{π}{2}$),則cos($\frac{2π}{3}$-θ)=( 。
A.$\frac{3}{10}$B.-$\frac{3}{10}$C.$\frac{4\sqrt{3}-3}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.750°化成弧度為(  )
A.$\frac{28}{3}$πradB.$\frac{25}{6}$πradC.$\frac{23}{6}$πradD.$\frac{23}{3}$πrad

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若直線l的斜率k的取值范圍為[-1,1],則其傾斜角α的取值范圍是( 。
A.$[\frac{π}{4},\frac{3π}{4}]$B.$[0,\frac{3π}{4}]$C.$[-\frac{π}{4},\frac{π}{4}]$D.$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x∈R,sinx=2;命題q:?x∈R,x 2-x+1>0.則下列結(jié)論正確的是( 。
A.命題是p∨q假命題B.命題是p∧q真命題
C.命題是(?p)∨(?q)真命題D.命題是(?p)∧(?q)真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的點(diǎn)到直線x-2y-12=0的距離的最小值為$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=10,且a2,a4,a8成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{1}{(n+2){a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)的導(dǎo)函數(shù)為f'(x),滿(mǎn)足xf'(x)+2f(x)=$\frac{1}{x}$,且f(1)=2,則f(x)的最小值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案