10.已知變量x,y滿足$\left\{{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}}\right.$,則$\frac{y-2}{x+2}$的最大值為$\frac{1}{4}$.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求$\frac{y-2}{x+2}$的最大值.

解答 解:作出不等式組$\left\{{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}}\right.$對(duì)應(yīng)的平面區(qū)域:
$\frac{y-2}{x+2}$的幾何意義為區(qū)域內(nèi)的點(diǎn)到P(-2,2)的斜率,
由圖象知,PA的斜率最大,
由$\left\{\begin{array}{l}{x=2}\\{x-2y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
故PA的斜率k=$\frac{3-2}{2+2}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃和直線斜率的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知O是△ABC所在平面上的一點(diǎn),若$\overrightarrow{PO}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)(其中P為平面上任意一點(diǎn)),則O點(diǎn)是△ABC的( 。
A.外心B.內(nèi)心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)α,β為銳角,且$\overrightarrow{a}$=(sinα,-cosα),$\overrightarrow$=(-cosβ,sinβ),$\overrightarrow{a}$+$\overrightarrow$=($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{2}}{2}$),求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a$+$\overrightarrow b$=(2,-8),$\overrightarrow a$-$\overrightarrow b$=(-8,16),則$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在(1+$\frac{x}{2}$)(1+$\frac{x}{{2}^{2}}$)…(1+$\frac{x}{{2}^{n}}$)(n∈N+,n≥2)的展開(kāi)式中,x的系數(shù)為$\frac{15}{16}$,則x2的系數(shù)為( 。
A.$\frac{15}{16}$B.$\frac{31}{128}$C.$\frac{35}{128}$D.$\frac{31}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)集合A={a1,a2,…,an}(其中ai∈R,i=1,2,…,n),a0為常數(shù),定義:ω=$\frac{1}{n}$[sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)]為集合A相對(duì)a0的“正弦方差”,則集合{$\frac{π}{2}$,π}相對(duì)a0的“正弦方差”為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)a、b、c∈(0,+∞),且acos2θ+bsin2θ<c,求證:$\sqrt{a}$cos2θ+$\sqrt$sin2θ<$\sqrt{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,平面ABCD⊥平面ABEF,其中四邊形ABCD為矩形,四邊形ABEF為等腰梯形,AB∥EF,點(diǎn)O為AB的中點(diǎn),M為CD的中點(diǎn),AB=2,AF=EF=1
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)若直線AM與平面CBF所成角的正弦值為$\frac{\sqrt{5}}{10}$,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知tanα=m(m≠0),求sinα與cosα.

查看答案和解析>>

同步練習(xí)冊(cè)答案