【題目】如圖,在等腰梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
【答案】(1)見解析;(2).
【解析】試題分析:(1)要證線面垂直,一般先證線線垂直,這里由已知的面面垂直可得,另外可由直角梯形的條件證得;
(2)本小題相當(dāng)于求二面角,因此我們以為坐標(biāo)軸建立空間直角坐標(biāo)系,寫出各點坐標(biāo),同時設(shè)出點坐標(biāo),然后求出平面與平面的法向量,由法向量的夾角的余弦表示出二面角的余弦,最后由函數(shù)的性質(zhì)可求得其取值范圍.
試題解析:(1)證明:在梯形中,
∵, , ,∴,
∴,
∴,∴,∴平面平面,平面平面, 平面,∴平面
(2)由(1)可建立分別以直線為軸, 軸, 軸的如圖所示空間直角坐標(biāo)系,
令,則,
∴.
設(shè)為平面的一個法向量,
由,得,
取,則,
∵是平面的一個法向量,
∴.
∵,∴當(dāng)時, 有最小值,
當(dāng)時, 有最大值,∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量(毫克)與時間(小時)成正比;藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示.據(jù)圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到毫克以下時,學(xué)生方可進(jìn)教室。那么藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D點是AB的中點
(1)求證:BC1∥平面CA1D.
(2)求三棱錐B-A1DC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機賣場對市民進(jìn)行華為手機認(rèn)可度的調(diào)查,隨機抽取200名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:
(1)求頻率分布表中的值,并補全頻率分布直方圖;
(2)利用頻率分布直方圖估計被抽查市民的平均年齡
(3)從年齡在, 的被抽查者中利用分層抽樣選取10人參加華為手機用戶體驗問卷調(diào)查,再從這10人中選出2人,求這2人在不同的年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù)2,,如表所示:
試銷單價元 | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量件 | 90 | 84 | 83 | 80 | q | 68 |
已知.
求表格中q的值;
已知變量x,y具有線性相關(guān)性,試?yán)米钚《朔ㄔ,求產(chǎn)品銷量y關(guān)于試銷單價x的線性回歸方程參考數(shù)據(jù);
用中的回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值記為2,,當(dāng)時,則稱為一個“理想數(shù)據(jù)”試確定銷售單價分別為4,5,6時有哪些是“理想數(shù)據(jù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函f(x)=x2﹣x+alnx.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證f(x2)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項和,an>0,且 .
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,Tn=b1+b2+…+bn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.
(1)求證:SB⊥平面SAD;
(2)求二面角D﹣SC﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com