20.化簡(jiǎn):$\frac{{x}^{2}+3x+9}{{x}^{3}-27}$+$\frac{6x}{9x-{x}^{2}}$-$\frac{x-1}{6+2x}$.

分析 根據(jù)立方差和,平方差公式,化簡(jiǎn)計(jì)算即可.

解答 解:$\frac{{x}^{2}+3x+9}{{x}^{3}-27}$+$\frac{6x}{9x-{x}^{3}}$-$\frac{x-1}{6+2x}$,
=$\frac{{x}^{2}+3x+9}{(x-3)({x}^{2}+3x+9)}$-$\frac{6x}{x(x-3)(x+3)}$-$\frac{x-1}{2(x-3)}$,
=$\frac{1}{x-3}$-$\frac{6}{(x+3)(x-3)}$-$\frac{x-1}{2(x+3)}$,
=$\frac{2x+6-12-{x}^{2}+4x-3}{2(x+3)(x-3)}$,
=-$\frac{{x}^{2}-6x+9}{2(x+3)(x-3)}$,
=-$\frac{(x-3)^{2}}{2(x+3)(x-3)}$,
=$\frac{3-x}{2x+6}$.

點(diǎn)評(píng) 本題主要考查了分式的化簡(jiǎn),掌握立方差公式是關(guān)鍵,a3-b3=(a-b)(a2+ab+b2),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|x2-3x+2=0},B={x|mx-1=0},若B?A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|x2+(2-a)x+1=0,x∈R},若A⊆{x|x>0},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)f(x)=cos2x(x∈R)的圖象沿向量$\overrightarrow{a}$平移后,所得曲線對(duì)應(yīng)的函數(shù)在區(qū)間[$\frac{π}{3}$,$\frac{2π}{3}$]內(nèi)單調(diào)遞增,且在該區(qū)間的最大值為1,則向量$\overrightarrow{a}$可能是( 。
A.(-$\frac{π}{6}$,$\frac{1}{2}$)B.($\frac{π}{6}$,$\frac{1}{2}$)C.($\frac{π}{3}$,$\frac{3}{2}$)D.(-$\frac{π}{3}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2+ax+1,a∈R,且a≠0   
(1)若f(x)在[-1,1]上不單調(diào),求a的取值范圍;    
(2)設(shè)y=丨f(x)丨,求y在[0,丨a丨]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算:($\frac{2}{3}$)${\;}^{\frac{1}{3}}$=$\frac{\root{3}{18}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2-|x|+3,f(|x|)=a有實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若橢圓的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦距組成一個(gè)等差數(shù)列,則該橢圓的離心率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CD的中點(diǎn).
(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求直線AC與平面CBE所成角正弦值;
(Ⅲ)求面ACD和面BCE所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案