【題目】已知矩陣,,直線經(jīng)矩陣所對應(yīng)的變換得到直線,直線又經(jīng)矩陣所對應(yīng)的變換得到直線,求直線的方程.
【答案】
【解析】
求出,確定變換前直線的點(diǎn)與變換后直線的點(diǎn)坐標(biāo)關(guān)系,利用變換后點(diǎn)在上,建立方程,求出,同理確定變換前直線的點(diǎn)與變換后直線的點(diǎn)坐標(biāo)關(guān)系,即可求出結(jié)論.
解:
設(shè)P(x,y)是l1上的任意一點(diǎn),
其在BA所對應(yīng)的變換作用下的像為(x′,y′),
則,得,
由題意可得,點(diǎn)(x′,y′)在直線l3上,
所以2ax+by+4=0即為直線l1:x-y+4=0,
故,b=-1.
此時,同理可設(shè)Q(x0,y0)為l2上的任意一點(diǎn),
其在B所對應(yīng)的變換作用下的像為(x′0,y′0),
則,得,
又(x′0,y′0)在直線l3上,所以2y0-x0+4=0,
故直線l2的方程為2y-x+4=0,即x-2y-4=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足且,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是( )
A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時,
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過分別作曲線與的切線,且與關(guān)于軸對稱,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線C:的焦點(diǎn)為F,過F的直線交拋物線C于A,B兩點(diǎn).
(1)求線段AF的中點(diǎn)M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間內(nèi)沒有極值點(diǎn).
(1)求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間的最大值為且最小值為,求的取值范圍.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為廈門市2018年國慶節(jié)7天假期的樓房認(rèn)購量與成交量的折線圖,請你根據(jù)折線圖對這7天的認(rèn)購量(單位:套)與成交量(單位:套),則下列選項中正確的是( )
A.日成交量的中位數(shù)是10
B.日成交量超過日平均成交量的有2天
C.認(rèn)購量與日期正相關(guān)
D.10月7日認(rèn)購量的增長率小于10月7日成交量的增長率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)科大學(xué)實習(xí)小組為研究實習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
晝夜溫差() | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(人) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;
(2)若選取的是1月20日,2月5日,2月20日,3月5日四組數(shù)據(jù).
①請根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程(,用分?jǐn)?shù)表示);
②若由線性回歸方程得到的估計數(shù)據(jù)與剩余的檢驗數(shù)據(jù)的誤差均不超過1人,則認(rèn)為得到的線性回歸方程是理想的,試問①中所得線性回歸方程是否理想?
附參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,,.
(1)證明:平面PAC;
(2)若,,設(shè),且,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:(常數(shù)),,(,).數(shù)列滿足:.
(1)分別求,,的值:
(2)求數(shù)列的通項公式;
(3)問:數(shù)列的每一項能否均為整數(shù)?若能,求出的所有可能值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com