17.已知△ABC中,C=45°,a=$\frac{\sqrt{2}}{4}$,sin2A=sin2B-$\sqrt{2}$sinAsinB,則c=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3}{4}$

分析 利用正弦定理化簡已知等式可得a2=b2-$\sqrt{2}$ab,由余弦定理即可解得c的值.

解答 解:∵sin2A=sin2B-$\sqrt{2}$sinAsinB,
∴利用正弦定理可得:a2=b2-$\sqrt{2}$ab,
∵由余弦定理得c2=a2+b2-2accosC=${a}^{2}+^{2}-\sqrt{2}ab$=2a2=$\frac{1}{4}$,
∴$c=\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查利用正弦定理進(jìn)行邊角互化,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$cos(-\frac{8π}{3})$的值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)-sin(2x+π).
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若將f(x)的圖象向右平移$\frac{π}{4}$個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,面積為S,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(Ⅰ)求a+c-2b的值;
(Ⅱ)若B=$\frac{π}{3}$,S=4$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐S-ABC所在頂點(diǎn)都在球O的球面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,則球O的表面積為5π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=x2-2ax+1在(-∞,2]上是減函數(shù),則實(shí)數(shù)a的取值范圍( 。
A.[-∞,-2]B.[-2,+∞]C.[2,+∞]D.[-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)化簡:$\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$+$\frac{x+1}{{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{1}{3}}}{{x}^{\frac{1}{3}}-1}$;
(2)計(jì)算:($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)把十進(jìn)制數(shù)53轉(zhuǎn)化為二進(jìn)制數(shù);
(2)利用輾轉(zhuǎn)相除法求3869與6497的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\frac{sinθ+cosθ}{sinθ-cosθ}=3$,求值:
(1)tanθ; 
(2)cosθ+sinθ(θ為第三象限角)

查看答案和解析>>

同步練習(xí)冊答案