13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(-x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)=$\frac{elnx}{x}$,其中e是自然對(duì)數(shù)的底數(shù),且e≈2.72,則方程6f(x)-x=0在[-9,9]上的解的個(gè)數(shù)為( 。
A.4B.5C.6D.7

分析 確定f(x)的周期為3,函數(shù)在(0,e)上單調(diào)遞增,在(e,3)上單調(diào)遞減,在[0,9]上作出y=f(x)的圖象,作出y=$\frac{x}{6}$的圖象,即可得出結(jié)論.

解答 解:當(dāng)x>0時(shí),f(-x)+f(x+3)=0,∴f(x+3)=-f(-x),
∵f(x)是奇函數(shù),
∴f(x)的周期為3,
當(dāng)x∈(0,3)時(shí),f(x)=$\frac{elnx}{x}$,∴f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,
∴函數(shù)在(0,e)上單調(diào)遞增,在(e,3)上單調(diào)遞減,
在[0,9]上作出y=f(x)的圖象,作出y=$\frac{x}{6}$的圖象,如圖所示

∴在[0,9]上,有3個(gè)交點(diǎn),由對(duì)稱性,可得方程6f(x)-x=0在[-9,9]上的解的個(gè)數(shù)為6,
還有f(0)=0,共7個(gè).
故選:D.

點(diǎn)評(píng) 本題考查單調(diào)性和極值,函數(shù)的奇偶、周期性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某登山隊(duì)在山腳A處測(cè)得山頂B的仰角為45°,沿傾斜角為30°的斜坡前進(jìn)1000m后到達(dá)D處,又測(cè)得山頂?shù)难鼋菫?0°,則山的高度BC為$500(\sqrt{3}+1)$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an}中,an>0,a2=3,a6=12,則a4=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m為何值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交、相切、相離;
(3)求證:任何一條平行于l且與圓相交的直線被各圓截得的弦長(zhǎng)相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
應(yīng)該取消應(yīng)該保留無所謂
在校學(xué)生2100人120人y人
社會(huì)人士600人x人z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓x2+y2-4x-8y+m=0.
(1)若圓C與直線x+2y-5=0相交于M、N兩點(diǎn),且CM⊥CN(C為圓心),求m的值;
(2)在(1)的條件下,求以MN為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,AB=AC,向量$\overrightarrow{AP}$滿足2$\overrightarrow{AP}$=($\overrightarrow{AB}$+$\overrightarrow{AC}$),下列說法正確的是( 。
①$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;    
②$\overrightarrow{PA}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0;    
③直線AP平分∠A.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.奇函數(shù)y=f(x)在區(qū)間[3,7]上是增函數(shù),且最小值為-5,那么f(x)在區(qū)間[-7,-3]上(  )
A.是增函數(shù)且最小值為5B.是增函數(shù)且最大值為5
C.是減函數(shù)且最小值為5D.是減函數(shù)且最大值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=$\frac{lg(x+1)}{x-1}$的定義域?yàn)椋?1,1)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案