分析 設(shè)$<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>$=θ∈(0,π).由于$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$與k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$垂直,可得($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)=0,化為(k-1)(1-cosθ)=0,即可得出.
解答 解:設(shè)$<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>$=θ∈(0,π).
∵$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$與k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$垂直,
∴($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)=k${\overrightarrow{{e}_{1}}}^{2}$-${\overrightarrow{{e}_{2}}}^{2}$+(1-k)$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=k-1+(1-k)cosθ=0,
∴(k-1)(1-cosθ)=0,
∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個不共線的單位向量,
∴1-cosθ≠0,
∴k-1=0,解得k=1.
故答案為:1.
點評 本題考查了向量垂直與數(shù)量積的關(guān)系、向量共線,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com