分析 設(shè)∠MBH=α,∠NBH=β,根據(jù)三角函數(shù)關(guān)系得到$α+β=\frac{π}{6}$,根據(jù)三棱錐的體積公式,結(jié)合三角函數(shù)的輔助角公式進(jìn)行求解即可.
解答 解:由題意值VM-PNB=VP-MNB=$\frac{2}{3}$S△MNB=$\frac{2}{3}$×$\frac{1}{2}sin30°•BM•BN=\frac{1}{6}BM•BN$,
過B作BH⊥AC于H,如圖:
不妨設(shè)∠MBH=α,∠NBH=β,
由BH=$\sqrt{2}$知,VM-PNB=$\frac{1}{6}×\frac{\sqrt{2}}{cosα}•\frac{\sqrt{2}}{cosβ}$=$\frac{1}{3cosαcosβ}$,$α+β=\frac{π}{6}$,
∴VM-PNB=$\frac{1}{6}×\frac{\sqrt{2}}{cosα}•\frac{\sqrt{2}}{cosβ}$=$\frac{1}{3cosαcosβ}$=$\frac{1}{3cosαcos(\frac{π}{6}-α)}$=$\frac{1}{3cosα(\frac{\sqrt{3}}{2}cosα+\frac{1}{2}sinα)}$
=$\frac{4}{3}•\frac{1}{\sqrt{3}+2sin(2α+\frac{π}{3})}$$≥\frac{4}{3}•\frac{1}{2+\sqrt{3}}$=$\frac{4}{3}(2-\sqrt{3})$,當(dāng)且僅當(dāng)$α=\frac{π}{12}$時(shí),取等號(hào).
故答案為:$\frac{4}{3}(2-\sqrt{3})$
點(diǎn)評(píng) 本題主要考查空間三棱錐的體積的計(jì)算,利用三角函數(shù)法,結(jié)合三角函數(shù)輔助角公式以及三角函數(shù)的有界性是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com