【題目】已知,函數.
(1)討論的單調性;
(2)若有兩個零點,求實數的取值范圍.
【答案】(1)詳見解析;(2).
【解析】
(1)的定義域為,.對a分類討論,解不等式即可得到的單調性;
(2)利用(1)中的單調性轉化為研究函數的最值問題.
解:(1)的定義域為,.
①當時,,令,得;令,得,
所以在上單調遞增,上單調遞減.
②當時,,
當,即時,因為,所以在上單調遞增;
當,即時,因為,所以在上單調遞增;在上單調遞減,在上單調遞增;
當,即時,因為,所以在上單調遞增;在上單調遞減,在上單調遞增.
(2)由(1)知當時,在上單調遞增,在上單調遞減,
要使有兩個零點,只要,所以.(因為當時,,當時,)
下面我們討論當時的情形:
當,即時,在上單調遞增,不可能有兩個零點;
當,即時,因為,
所以在上單調遞增,在上單調遞減,在上單調遞增;
因為,,所以,沒有兩個零點;
當時,即時,因為,
所以在上單調遞增,在上單調遞減,在上單調遞增,
,,沒有兩個零點.
綜上所述:當時,有兩個零點.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線和曲線的極坐標方程;
(2)已知射線(),將射線順時針方向旋轉得到:,且射線與曲線交于兩點,射線與曲線交于兩點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術的年產量(單位:)和使用了新技術后的年產量的數據變化,得到表格如下:
未使用新技術的10棵臍橙樹的年產量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術后的10棵臍橙樹的年產量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹.
(1)估計該基地使用了新技術后,平均1棵臍橙樹的產量;
(2)估計該基地使用了新技術后,臍橙年總產量比未使用新技術將增產多少?
(3)由于受市場影響,導致使用新技術后臍橙的售價由原來(未使用新技術時)的每千克10元降為每千克9元,試估計該基地使用新技術后臍橙年總收入比原來增加的百分數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]:在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線,的直角坐標方程;
(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名片,隨著全民運動健康意識的提高,馬拉松運動不僅在蘭州,而且在全國各大城市逐漸興起,參與馬拉松訓練與比賽的人口逐年增加.為此,某市對人們參加馬拉松運動的情況進行了統(tǒng)計調查.其中一項調查是調查人員從參與馬拉松運動的人中隨機抽取200人,對其每周參與馬拉松長跑訓練的天數進行統(tǒng)計,得到以下統(tǒng)計表:
平均每周進行長跑訓練天數 | 不大于2天 | 3天或4天 | 不少于5天 |
人數 | 30 | 130 | 40 |
若某人平均每周進行長跑訓練天數不少于5天,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”.
(1)經調查,該市約有2萬人參與馬拉松運動,試估計其中“熱烈參與者”的人數;
(2)根據上表的數據,填寫下列2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“熱烈參與馬拉松”與性別有關?
熱烈參與者 | 非熱烈參與者 | 合計 | |
男 | 140 | ||
女 | 55 | ||
合計 |
附:k2=(n為樣本容量)
P(k2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com