5.若函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx的圖象向右平移$\frac{π}{3}$個(gè)單位后所得的函數(shù)為偶函數(shù),則ω的值可以是( 。
A.7B.8C.9D.10

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,可得ω=-3k-1,k∈Z,從而得出結(jié)論.

解答 解:把函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx=2sin(ωx+$\frac{π}{6}$)的圖象向右平移$\frac{π}{3}$個(gè)單位后所的圖象對應(yīng)的函數(shù)解析式為y=2sin[ω(x-$\frac{π}{3}$)+$\frac{π}{6}$]=2sin(ωx+$\frac{π}{6}$-$\frac{ωπ}{3}$),
根據(jù)所得的函數(shù)為偶函數(shù),即所得圖象關(guān)于y軸對稱,可得$\frac{π}{6}$-$\frac{ωπ}{3}$=kπ+$\frac{π}{2}$,k∈Z,求得ω=-3k-1,故ω的值可以為8,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,PA⊥BC,AB⊥AC,PA=1,BC=2.D、E、F分別是棱PA、PB、PC的中點(diǎn),連接DE、DF、EF.
(1)求證:PA⊥平面ABC;
(2)求三棱錐P-ABC的體積最大值;
(3)當(dāng)三棱錐P-ABC的體積取最大值時(shí),求證:平面AEF⊥平面PEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義數(shù)列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),則使xn是整數(shù)的n的最小值是( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(-1,1)上是增函數(shù);
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.與圓(x-2)2+y2=1相切且在兩坐標(biāo)軸上截距相等的直線共有( 。
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在幾何體ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,點(diǎn)D在底面ABC上的射影O為底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)證明:A,D,E,O四點(diǎn)共面;
(2)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若z=$\frac{3+2i}{i}$,則|$\overline{z}-1$|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx-x2,g(x)=$\sqrt{x}$-x-2.
(Ⅰ)若不等式f(x)≤ag(x)對x∈[$\frac{1}{4}$,1]恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)+$\frac{1}{2}$x的最大值,并證明當(dāng)n∈N時(shí)f(n)+g(n)≤-3.

查看答案和解析>>

同步練習(xí)冊答案