分析 對第(Ⅰ)問,將a=2代入函數(shù)的解析式中,利用分段討論法解絕對值不等式即可;
對第(Ⅱ)問,先由已知解集{x|0≤x≤2}確定a值,再將“m+2n”改寫為“(m+2n)($\frac{1}{m}$+$\frac{1}{2n}$)”,展開后利用基本不等式可完成證明.
解答 解:(I)當a=2時,不等式f(x)≥4-|x-1|即為|x-2|≥4-|x-1|,
①當x≤1時,原不等式化為2-x≥4+(x-1),得x≤-$\frac{1}{2}$,
故x≤-$\frac{1}{2}$;
②當1<x<2時,原不等式化為2-x≥4-(x-1),得2≥5,
故1<x<2不是原不等式的解;
③當x≥2時,原不等式化為x-2≥4-(x-1),得x≥$\frac{7}{2}$,
故x≥$\frac{7}{2}$.
綜合①、②、③知,原不等式的解集為(-∞,-$\frac{1}{2}$]∪[$\frac{7}{2}$,+∞).
(Ⅱ)證明:由f(x)≤1得|x-a|≤1,從而-1+a≤x≤1+a,
∵f(x)≤1的解集為{x|0≤x≤2},
∴$\left\{\begin{array}{l}{-1+a=0}\\{1+a=2}\end{array}\right.$,得a=1,∴$\frac{1}{m}$+$\frac{1}{2n}$=a=1.
又m>0,n>0,
∴m+2n=(m+2n)($\frac{1}{m}$+$\frac{1}{2n}$)
=2+($\frac{2n}{m}$+$\frac{m}{2n}$)≥2+2$\sqrt{\frac{2n}{m}•\frac{m}{2n}}$=4,
當且僅當$\frac{2n}{m}$=$\frac{m}{2n}$即m=2n時,等號成立,
此時,聯(lián)立$\frac{1}{m}$+$\frac{1}{2n}$=1,得$\left\{\begin{array}{l}{m=2}\\{n=1}\end{array}\right.$時,m+2n=4,
故m+2n≥4,得證.
點評 1.已知不等式的解集求參數(shù)的值,求解的一般思路是:先將原不等式求解一遍,再把結(jié)果與已知解集對比即可獲得參數(shù)的值.
2.本題中,“1”的替換很關(guān)鍵,這是解決此類題型的一種常用技巧,應注意體會證明過程的巧妙性.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{64}$ | B. | 32 | C. | 64 | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A1C∥平面AB1E | B. | A1C⊥AE | ||
C. | B1E與CC1是異面直線 | D. | 平面AB1E與平面BCC1B1不垂直 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$∞,\frac{1}{2}$)∪($\frac{3}{4}$,+∞) | B. | ($\frac{1}{2},+∞$) | C. | (-$∞,\frac{1}{2}$) | D. | (0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com