已知函數(shù)f(x)=x2+bx+c,其中b,c為常數(shù).
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào),求b的取值范圍;
(Ⅱ)若對任意x∈R,都有f(-1+x)=f(-1-x)成立,且函數(shù)f(x)的圖象經(jīng)過點(c,-b),求b,c的值.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)利用二次函數(shù)單調(diào)性與對稱軸之間的關(guān)系即可求b的取值范圍;
(Ⅱ)根據(jù)條件f(-1+x)=f(-1-x)和圖象經(jīng)過點(c,-b),建立方程即可求b,c的值.
解答: 解:(I)因為函數(shù)f(x)=x2+bx+c,
所以它的開口向上,對稱軸方程為x=-
b
2
,
因為函數(shù)f(x)在區(qū)間[-
b
2
,+∞)上單調(diào)遞增,所以x=-
b
2
≤1,
所以b≥-2.
(Ⅱ)因為f(-1+x)=f(-1-x),
所以函數(shù)f(x)的對稱軸方程為x=-1,
所以b=2,
又因為函數(shù)f(x)的圖象經(jīng)過點(c,-b),
所以有c2+2c+c=-2,
即c2+3c+2=0,
所以c=-2或c=-1.
點評:本題主要考查二次函數(shù)的圖象和性質(zhì),要求熟練掌握二次函數(shù)的性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( 。
A、57.2  3.6
B、57.2
C、62.8   63.6
D、62.8  3.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2<x<10},B={x|x<a},若A∩B≠φ,則a的取值范圍是( 。
A、(2,+∞)
B、[2,+∞)
C、(10,+∞)
D、[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-1≤x≤1時,函數(shù)f(x)=ax+2a+1的值有正值也有負(fù)值,則a的取值范圍是( 。
A、a≥-
1
3
B、a≤-1
C、-1<a<-
1
3
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足(x-1)2+y2=16,則x2+y2的最小值為( 。
A、3B、5C、9D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2+3x-4y+6=0,請寫出它的一條切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,若a4,a3,a5成等差數(shù)列,且Sk=33,Sk+1=-63,其中k∈N*,則Sk+2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx

(1)求函數(shù)f(x)的值域,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若0<θ<
π
6
,且f(θ)=
4
3
,計算cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在坐標(biāo)原點O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是F1(-
2
,0),F2(
2
,0)

(1)若橢圓C上一動點M1滿足|
M1F1
|+|
M1F2
|=4,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點P(0,t)(t<0)作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為2
3
,求P點的坐標(biāo);
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點(m,m2),(n,n2)的直線的最短距離dmin=
a2+b2
-b
.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案