14.設(shè)(5x-$\frac{1}{\sqrt{x}}$)n的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若M-N=240,則n的值為( 。
A.4B.6C.8D.10

分析 由于各項系數(shù)之和為M=4n,二項式系數(shù)之和為N=2n,M-N=240=4n-2n,解方程求得 n 的值.

解答 解:各項系數(shù)之和為M=4n,二項式系數(shù)之和為N=2n,M-N=240=4n-2n,解得n=4.
故選:A.

點(diǎn)評 本題考查各項系數(shù)之和,與二項式系數(shù)之和的關(guān)系,得到各項系數(shù)之和為M=4n,二項式系數(shù)之和為N=2n,是
解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖所示,其中俯視圖是一個正方形,則這
個幾何體的體積是(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{3}π$B.$\frac{16}{3}π$C.D.$\frac{64}{3π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知一個算法,其流程圖如圖,則輸出結(jié)果是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為F,過F作雙曲線C的一條漸近線的垂線,垂足為H,若FH的中點(diǎn)M在雙曲線C上,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{6}}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(1)求曲線C2的直角坐標(biāo)方程;
(2)求曲線C2上的動點(diǎn)M到曲線C1的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有四個關(guān)于三角函數(shù)的命題:
p1:sinx=siny⇒x+y=π或x=y;
p2:?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=1;
p3:x,y∈R,cos(x-y)=cosx-cosy;
p4:?x∈[0,$\frac{π}{2}$],$\sqrt{\frac{1+cos2x}{2}}$=cosx.
其中真命題是( 。
A.p1,p2B.p2,p3C.p1,p4D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.0B.-$\frac{1}{2}$C.-1D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)不等式組$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$ 表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在圓x2+y2=1內(nèi)的概率為$\frac{π}{8}$.

查看答案和解析>>

同步練習(xí)冊答案