9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為F,過F作雙曲線C的一條漸近線的垂線,垂足為H,若FH的中點(diǎn)M在雙曲線C上,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 設(shè)一漸近線方程為y=$\frac{a}$x,則F2H的方程為y-0=k(x-c),代入漸近線方程 求得H的坐標(biāo),有中點(diǎn)公式求得中點(diǎn)M的坐標(biāo),再把點(diǎn)M的坐標(biāo)代入雙曲線求得離心率.

解答 解:由題意可知,一漸近線方程為y=$\frac{a}$x,則F2H的方程為 y-0=k(x-c),
代入漸近線方程 y=$\frac{a}$x,可得H的坐標(biāo)為($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
故F2H的中點(diǎn)M($\frac{c+\frac{{a}^{2}}{c}}{2}$,$\frac{ab}{2c}$),
根據(jù)中點(diǎn)M在雙曲線C上,
∴$\frac{(\frac{{a}^{2}}{c}+c)^{2}}{4{a}^{2}}-\frac{{a}^{2}^{2}}{4^{2}{c}^{2}}$=1,
∴$\frac{{c}^{2}}{{a}^{2}}$=2,故e=$\frac{c}{a}$=$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|$\frac{1}{x}$<1},B={y|y=2-x-1,x∈R},則A∩B=( 。
A.B.{x|x>1}C.{x|-1<x<0}D.{x|-1<x<0或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},}&{x≤0}\\{lo{g}_{2}}&{x,x>0}\end{array}\right.$,若對(duì)任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,則正實(shí)數(shù)a的最小值是( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某城市對(duì)機(jī)動(dòng)車單雙號(hào)限行進(jìn)行了調(diào)查,在參加調(diào)查的2548名有車人中有1560名持反對(duì)意見,2452名無車人中有1200名持反對(duì)意見,在運(yùn)用這些數(shù)據(jù)說明“擁有車輛”與“反對(duì)機(jī)動(dòng)車單雙號(hào)限行”是否有關(guān)系時(shí),用什么方法最有說服力( 。
A.平均數(shù)與方差B.回歸直線方程C.獨(dú)立性檢驗(yàn)D.概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(N=1,2,3,…)則數(shù)列{an}的通項(xiàng)公式為an=( 。
A.$\frac{1}{{2}^{n-1}}$B.$\frac{1}{n}$C.$\frac{n}{n+1}$D.$\frac{1}{2n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)(5x-$\frac{1}{\sqrt{x}}$)n的展開式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M-N=240,則n的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某班學(xué)生語(yǔ)文與數(shù)學(xué)的學(xué)業(yè)水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表,若抽取學(xué)生n人,成績(jī)分為A(優(yōu)秀)、B(良好)、C(及格)三個(gè)等級(jí),設(shè)x,y分別表示語(yǔ)文成績(jī)與數(shù)學(xué)成績(jī),例如:表中語(yǔ)文成績(jī)?yōu)锽等級(jí)的共有20+18+4=42人,已知x與y均為B等級(jí)的概率是0.18.
x語(yǔ)文
人數(shù)
y數(shù)學(xué)
ABC
A7205
B9186
Ca4b
(Ⅰ)求抽取的學(xué)生人數(shù);
(Ⅱ)設(shè)該樣本中,語(yǔ)文成績(jī)優(yōu)秀率是30%,求a,b的值;
(Ⅲ)已知a≥10,b≥8,求語(yǔ)文成績(jī)?yōu)锳等級(jí)的總?cè)藬?shù)比語(yǔ)文成績(jī)?yōu)镃等級(jí)的總?cè)藬?shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知函數(shù)f(x)=|x-1|+|x+3|,求x的取值范圍,使f(x)為常函數(shù);
(2)若x,y,z∈R,x2+y2+z2=1,求m=$\sqrt{2}$x+$\sqrt{2}$y+$\sqrt{5}$z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)設(shè)函數(shù)$f(x)=|\frac{1}{2}x+1|+|x|(x∈R)$,求f(x)的最小值,
(2)當(dāng)a+2b+3c=m(a,b,c∈R)時(shí),求a2+b2+c2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案