3.化簡(jiǎn)$\sqrt{1+sin4}+\sqrt{1-sin4}$,得到( 。
A.-2sin2B.-2cos2C.2sin2D.2cos2

分析 利用三角函數(shù)的基本關(guān)系式以及倍角公式對(duì)被開(kāi)方數(shù)分解因式,化簡(jiǎn)即得.

解答 解:$\sqrt{1+sin4}+\sqrt{1-sin4}$=$\sqrt{si{n}^{2}2+2sin2cos2+co{s}^{2}2}$+$\sqrt{si{n}^{2}2+co{s}^{2}2-2sin2cos2}$=$\sqrt{(sin2+cos2)^{2}}+\sqrt{(sin2-cos2)^{2}}$
=|sin2+cos2|+|sin2-cos2|($\frac{π}{2}<2<\frac{3π}{4}$)
=sin2+cos2+sin2-cos2
=2sin2;
故選C.

點(diǎn)評(píng) 本題考查了三角函數(shù)的基本關(guān)系式、倍角公式以及三角函數(shù)符號(hào)的運(yùn)用;關(guān)鍵是正確化簡(jiǎn),明確2的三角函數(shù)符號(hào),正確去絕對(duì)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在菱形ABCD中,|$\overrightarrow{AB}$|=2,∠BAD=$\frac{π}{3}$,E為CD的中點(diǎn),則$\overrightarrow{AC}$•$\overrightarrow{BE}$=(  )
A.-3B.3C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.定義:如果一個(gè)數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),那么稱(chēng)此數(shù)列為“三角形”數(shù)列.已知數(shù)列{an}滿足an=dn2(d>0).
(Ⅰ)試判斷數(shù)列{an}是否是“三角形”數(shù)列,并說(shuō)明理由;
(Ⅱ)在數(shù)列{bn}中,b1=1,前n項(xiàng)和Sn滿足3Sn+1-3=2Sn
(1)證明:數(shù)列{bn}是“三角形”數(shù)列;
(2)設(shè)d=1,數(shù)列{$\frac{{{a}_{n}b}_{n}}{n}$}的前n項(xiàng)和為T(mén)n,若不等式Tn+($\frac{2}{3}$)n•$\frac{a}{n}$-9<0對(duì)任意的n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知點(diǎn)P(sinα,tanα)在第二象限,則角α在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)N(x,y)的坐標(biāo)滿足$\left\{\begin{array}{l}{2x-3y+1≤0}\\{3x+y-4≤0}\\{x≥0}\end{array}\right.$,設(shè)O為坐標(biāo)原點(diǎn),M(3,1),則使得$\overrightarrow{OM}$•$\overrightarrow{ON}$取得最大值時(shí)的點(diǎn)N的個(gè)數(shù)是(  )
A.1B.2C.3D.無(wú)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知△ABC中,a,b,c分別為∠A,∠B.∠C的對(duì)邊,∠B=60°,b=2,a=x,若c有兩組解,則x的取值范圍是(2,$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知復(fù)數(shù)z=(m2+m-6)+(m2-3m+2)i(m∈R).
(Ⅰ)當(dāng)m取何值時(shí),z為純虛數(shù)?
(Ⅱ)如果復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=$\frac{1}{2-x}$+lg(x-1)的定義域是{x|x>1且x≠2}.(用集合表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖是函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象.現(xiàn)給出如下結(jié)論:
①f(x)在(-3,-1)上是增函數(shù);
②x=4是f(x)的極小值點(diǎn);
③f(x)在(-1,2)上是增函數(shù),在(2,4)上是減函數(shù);
④x=-1一定是f(x)的零點(diǎn).
其中正確結(jié)論的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案