2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{alnx+x+\frac{3}{x},x≥1}\\{{x^3}+a{x^2}+2x-2,x<1}\end{array}}\right.$,a∈R.
(1)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,2)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)通過(guò)討論x的范圍,分離參數(shù)a,根據(jù)既不不等式的性質(zhì)求出a的范圍即可.

解答 解:(1)當(dāng)x≥1時(shí),$f(x)=-2lnx+x+\frac{3}{x}$,${f^'}(x)=\frac{-2}{x}+1-\frac{3}{x^2}=\frac{{{x^2}-2x-3}}{x^2}$,
由f′(x)>0,得x>3;由f′(x)<0得1<x<3,x<1時(shí),f(x)=x3-2x2+2x-2,
${f^'}(x)=3{x^2}-4x+2=3{(x-\frac{2}{3})^2}+\frac{2}{3}>0$,
綜上所述,函數(shù)f(x)的單增區(qū)間為(-∞,1),(3,+∞);單減區(qū)間為(1,3).
(2)當(dāng)1<x<2時(shí),$f(x)=alnx+x+\frac{3}{x}$,${f^'}(x)=\frac{a}{x}+1-\frac{3}{x^2}=\frac{{{x^2}+ax-3}}{x^2}≥0$恒成立,
則$-a≤x-\frac{3}{x}$在區(qū)間(1,2)上恒成立,
而函數(shù)$y=x-\frac{3}{x}$在區(qū)間(1,2)上單調(diào)遞增,所以-a≤-2,即a≥2;
當(dāng)0<x<1時(shí),f(x)=x3+ax2+2x-2,f′(x)=3x2+2ax+2≥0恒成立,
則$-2a≤3x+\frac{2}{x}$在區(qū)間(0,1)上恒成立,
而x∈(0,1)時(shí)$3x+\frac{2}{x}≥2\sqrt{6}$,等號(hào)當(dāng)且僅當(dāng)$x=\frac{{\sqrt{6}}}{3}$時(shí)成立,
所以$-2a≤2\sqrt{6}$,即$a≥-\sqrt{6}$,
由于f(x)在區(qū)間(0,2)上單調(diào)遞增,
故$\left\{{\begin{array}{l}{a≥2}\\{a≥-\sqrt{6}}\\{1+a+2-2≤1+3}\end{array}}\right.$,解得2≤a≤3.
所以所求實(shí)數(shù)a的取值范圍是[2,3].

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查既不不等式的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給出下列關(guān)系:①∅⊆{0}; ②$\sqrt{2}$∈Q;③3∈{x|x2=9};④0∈Z.正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=sin(πx+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),記∠APB=θ,則sin2θ的值是$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題:
①已知兩個(gè)不同的平面α,β和兩條不同的直線a,b,若a⊥α,b⊥β,且a∥b,則α∥β;
②已知兩個(gè)不同的平面α,β和兩條不同的直線a,b,若a⊥α,b⊥β,且a⊥b,則α⊥β;
③若一個(gè)二面角的兩個(gè)半平面分別與另一個(gè)二面角的兩個(gè)半平面平行,則這兩個(gè)二面角的平面角相等或互補(bǔ);
④若一個(gè)二面角的兩個(gè)半平面分別與另一個(gè)二面角的兩個(gè)半平面垂直,則這兩個(gè)二面角的平面角相等或互補(bǔ);
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],則tanθ=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知定義在(-1,1)上的奇函數(shù)f(x),在x∈(-1,0)時(shí),f(x)=2x+2-x
(1)求f(x)在(-1,1)上的表達(dá)式;
(2)用定義證明f(x)在(-1,0)上是減函數(shù);
(3)若對(duì)于x∈(0,1)上的每一個(gè)值,不等式m•2x•f(x)<4x-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)=$\frac{π}{2}$+cosx,則f′($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.放射性元素由于不斷有原子放射出微粒子而變成其它元素,其含量不斷減少,這種現(xiàn)象稱(chēng)為衰變.假設(shè)在某放射性元素的衰變過(guò)程中,其含量M與時(shí)間t(單位:年)滿(mǎn)足函數(shù)關(guān)系:M(t)=M0e-kt(M0,k均為非零常數(shù),e為自然對(duì)數(shù)的底數(shù)),其中M0為t=0時(shí)該放射性元素的含量,若經(jīng)過(guò)5年衰變后還剩余90%的含量,則該放射性元素衰變到還剩余40%,至少需要經(jīng)過(guò)(參考數(shù)據(jù):ln0.2≈-1.61,ln0.4≈-0.92,ln0.9≈-0.11)( 。
A.40年B.41年C.42年D.43年

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{$\frac{n}{{2}^{n}}$}的前n項(xiàng)和為Sn,則Sn=2-$\frac{2+n}{{2}^{n}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案