14.已知f(x)=$\frac{π}{2}$+cosx,則f′($\frac{π}{2}$)=-1.

分析 根據(jù)函數(shù)的求導(dǎo)法則可知:f′(x)=-sinx,則f′($\frac{π}{2}$)=-sin($\frac{π}{2}$)=-1.

解答 解:f(x)=$\frac{π}{2}$+cosx,求導(dǎo),f′(x)=-sinx,
f′($\frac{π}{2}$)=-sin($\frac{π}{2}$)=-1,
故答案為:-1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算,考查導(dǎo)數(shù)的運(yùn)算法則得應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)sin(-π-α)}$;    
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=e1-x的定義域?yàn)镸,g(x)=ln(x-1)的定義域?yàn)镹,則M∩N為(  )
A.B.{x|x<-1}C.{x|x>1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{alnx+x+\frac{3}{x},x≥1}\\{{x^3}+a{x^2}+2x-2,x<1}\end{array}}\right.$,a∈R.
(1)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,2)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)$f(x)=({1+\sqrt{3}tanx})cosx,0≤x≤\frac{π}{2}$,則f(x)的最大值為( 。
A.1B.2C.$\sqrt{3}+1$D.$\sqrt{3}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.求滿足${(\frac{1}{2})^{x+1}}$>4-2x的x的取值集合是$(\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若數(shù)列{an}滿足a1=9,${a_{n+1}}=\frac{1}{3}{a_n}$,(n∈N*),則a5=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+c2=b2-ac.
(1)求B的大。
(2)設(shè)∠BAC的平分線AD交BC于D,AD=2$\sqrt{3}$,BD=1,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C所對(duì)的邊分別為$a,b,c,b=\sqrt{7},c=1,B={120°}$
(1)求a;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案