20.已知函數(shù)y=f (x)是定義在R上的任意不恒為零的函數(shù),則下列判斷:
①y=f(|x|)為偶函數(shù);
②y=f(x)+f(-x)為非奇非偶函數(shù);
③y=f(x)-f(-x)為奇函數(shù);
④y=[f(x)]2為偶函數(shù).
其中正確判斷的個(gè)數(shù)有(  )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

分析 利用奇函數(shù)、偶函數(shù)的性質(zhì)及定義進(jìn)行判斷.

解答 解:由函數(shù)y=f (x)是定義在R上的任意不恒為零的函數(shù),知:
在①中,y=f(|x|)=f(|-x|),為偶函數(shù),故①正確;
在②中,y=f(x)+f(-x)=f(-x)+f(-(-x),為偶函數(shù),故②錯(cuò)誤;
在③中,y=f(x)-f(-x)=-[f(-x)-f(-(-x)]為奇函數(shù),故③正確;
④y=[f(x)]2≠±[f(x)]2,為非奇非偶函數(shù),故④錯(cuò)誤.
故選:B.

點(diǎn)評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意奇函數(shù)、偶函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線的參數(shù)方程為$\left\{\begin{array}{l}x=2+3t\\ y=3-4t\end{array}\right.$(t為參數(shù)),則直線的斜率為( 。
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.${∫}_{0}^{2}$(x+ex)dx=e2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.${({x+\frac{1}{ax}})^5}$的各項(xiàng)系數(shù)和是1024,則由曲線y=x2和y=xa圍成的封閉圖形的面積為$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足an+2+an=2an+1(n∈N*),且a5=$\frac{π}{2}$,若函數(shù)f(x)=sin2x+2cos2$\frac{x}{2}$,記yn=f(an),則數(shù)列{yn}的前9項(xiàng)和為(  )
A.0B.-9C.9D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)D,E,F(xiàn)分別為△ABC的三邊BC,CA,AB的中點(diǎn),則$\overrightarrow{EB}$+$\overrightarrow{FC}$=(  )
A.?$\frac{1}{2}\overrightarrow{AD}$????B.?$\frac{1}{2}\overrightarrow{BC}$????C.?$\overrightarrow{BC}$????D.$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系中,若P(x,y)滿足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,則當(dāng)xy取得最大值時(shí),點(diǎn)P的坐標(biāo)是($\frac{5}{2}$,5),xy取得的最大值為$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(-2,-$\frac{1}{8}$),則滿足f(x)=27的x值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,P為右支上一點(diǎn),且|$\overrightarrow{{PF}_{1}}$|=8,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,則雙曲線的漸近線方程是( 。
A.y=±2$\sqrt{2}$xB.y=±2$\sqrt{6}$xC.y=±5xD.y=±$\frac{3}{4}$x

查看答案和解析>>

同步練習(xí)冊答案