8.復(fù)數(shù)$\frac{a+i}{1+i}$為純虛數(shù),其中i為虛數(shù)單位,則實數(shù)a的值為(  )
A.-1B.1C.-2D.2

分析 化簡已知復(fù)數(shù),由純虛數(shù)的定義可得a的方程,解方程可得.

解答 解:化簡已知復(fù)數(shù)可得$\frac{a+i}{1+i}$=$\frac{(a+i)(1-i)}{(1+i)(1-i)}$=$\frac{a-ai+i-{i}^{2}}{1-{i}^{2}}$=$\frac{a+1+(1-a)i}{2}$,
由純虛數(shù)的定義可得a+1=0且1-a≠0,
解得a=-1
故選:A

點評 本題考查復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算,涉及復(fù)數(shù)的基本概念,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosx,cosx),向量$\overrightarrow$=(cosx,sinx)(x∈R).設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(I)求f($\frac{3π}{8}$)的值;                 
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.觀察下列等式

照此規(guī)律,第100個等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=2,則直線l與圓C的交點的直角坐標(biāo)為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.柱坐標(biāo)(2,$\frac{2π}{3}$,1)對應(yīng)的點的直角坐標(biāo)是$(-1,\sqrt{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A,B(A<B)是Rt△ABC的兩銳角,若存在一正實數(shù)使sinA,sinB是方程25x2-(10+5k)x+2k+2=0的兩根.求:
(Ⅰ)k的值;
(Ⅱ)cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等邊三角形ABC的邊長為1,$\overrightarrow{BC}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AB}=\overrightarrow c$,那么$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow{c•}\overrightarrow a$等于( 。
A.$\frac{1}{2}$B.3C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在極坐標(biāo)系中,曲線ρ=3的普通方程為為x2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)數(shù)列{an}中,已知a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1),則a3=( 。
A.$\frac{8}{5}$B.$\frac{5}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案