3.解方程:|$\frac{x-3}{2}$-1|-2x=1.

分析 方程即|x-5|=4x+2,可得 $\left\{\begin{array}{l}{x≥5}\\{x-5=4x+2}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{x<5}\\{5-x=4x+2}\end{array}\right.$ ②,分別求得①、②的解,再取并集,即得所求.

解答 解:方程 即|$\frac{x-3}{2}$-1|-2x=1,即|x-5|=4x+2,∴$\left\{\begin{array}{l}{x≥5}\\{x-5=4x+2}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{x<5}\\{5-x=4x+2}\end{array}\right.$ ②.
解①求得x∈∅,解②求得x=$\frac{3}{5}$,
綜上可得,x=$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查含有絕對(duì)值的方程的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.一個(gè)車間為了規(guī)定工時(shí)定額,需要確定加工零點(diǎn)所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:
零件數(shù)x(個(gè))1020304050
加工時(shí)間y(分鐘)6469758290
由表中數(shù)據(jù),求得線性回歸方程$\widehat{y}$=bx+$\widehat{a}$,已知回歸直線在y軸上的截距為56.5,根據(jù)回歸方程,預(yù)測(cè)加工102分鐘的零件個(gè)數(shù)約為70.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)據(jù)a1,a2,a3,…an的方差為9,則數(shù)據(jù)ka1+b,ka2+b,ka3+b,…,kan+b,(kb≠0)的標(biāo)準(zhǔn)差為3|k|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若方程2x3+(a-3)x2+1-a=0有且只有一個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若直線y=kx+1與圓x2+(y-1)2=4的兩個(gè)交點(diǎn)關(guān)于直線2x-y+a=0對(duì)稱,則k,a的值為( 。
A.k=-$\frac{1}{2}$,a=-1B.k=$\frac{1}{2}$,a=-1C.k=$\frac{1}{2}$,a=1D.k=-$\frac{1}{2}$,a=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某校有學(xué)生1500人,其中高一年級(jí)400人,現(xiàn)采用分層抽樣方法抽取一個(gè)容量為n的樣本,樣本中高一年級(jí)12人,那么此樣本的容量n=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1
(1)求a4的值.
(2)證明:{an-1-$\frac{1}{2}$an}為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.定義在(1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));②當(dāng)2≤x≤4時(shí),f(x)=1-(x-3)2,若f(12)=2,當(dāng)1≤x≤2時(shí),則函數(shù)f(x)的解析式為f(x)=$\frac{\sqrt{2}}{2}$[1-(2x-3)2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知tanα=3,求
(1)sin2α;
(2)$\frac{sinα+2cosα}{2sinα-cosα}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案