8.如圖所示,在邊長(zhǎng)為1的正方形f(x)中任取一點(diǎn)f(x),則點(diǎn)[-1,1)恰好取自陰影部分的概率為$\frac{1}{6}$.

分析 求出正方形OABC的面積,陰影部分由函數(shù)y=x與y=$\sqrt{x}$圍成,由定積分公式計(jì)算陰影部分的面積,由幾何概型公式計(jì)算即可.

解答 解:根據(jù)題意,該題是幾何概型的應(yīng)用問題,
正方形OABC的面積為1×1=1,
而陰影部分由函數(shù)y=x與y=$\sqrt{x}$圍成,其面積為
${∫}_{0}^{1}$($\sqrt{x}$-x)dx=($\frac{2}{3}$${x}^{\frac{3}{2}}$-$\frac{1}{2}$x2)${|}_{0}^{1}$=$\frac{1}{6}$;
則所求的概率為P=$\frac{1}{6}$.
故答案為:$\frac{1}{6}$.

點(diǎn)評(píng) 本題考查了幾何概型的計(jì)算問題,涉及定積分在求面積中的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a1+a3=10,前4項(xiàng)和S4=30,則公比q等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=lg(2sinx+1)+$\sqrt{2cosx-1}$的定義域是(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x2+bx-4在(-∞,-1]上是減函數(shù),在[-1,+∞)上是增函數(shù),則( 。
A.b<0B.b>0C.b=0D.b的符號(hào)不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為棱CC1上的動(dòng)點(diǎn).
(1)若E為棱CC1的中點(diǎn),求證:A1E⊥平面BDE;
(2)試確定E點(diǎn)的位置使直線A1C與平面BDE所成角的正弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C與雙曲線y2-x2=1有共同焦點(diǎn),且離心率為$\frac{\sqrt{6}}{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若A為橢圓C的下頂點(diǎn),M、N為橢圓C上異于A的兩點(diǎn),直線AM與AN的斜率之積為1.
(i)求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)若O為坐標(biāo)原點(diǎn),求$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的外接球的表面積為1025π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=3sin({\frac{2π}{3}-2x})$的一個(gè)單調(diào)遞增區(qū)間是( 。
A.$[{\frac{7π}{12},\frac{13π}{12}}]$B.$[{\frac{π}{12},\frac{7π}{12}}]$C.$[{-\frac{π}{2},\frac{π}{2}}]$D.$[{-\frac{5π}{6},\frac{π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1℃變化到5℃,反應(yīng)結(jié)果如表所示(x表示溫度,y代表結(jié)果):
x12345
y3571011
(1)求化學(xué)反應(yīng)的結(jié)果y對(duì)溫度x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并預(yù)測(cè)當(dāng)溫度到達(dá)10℃時(shí)反應(yīng)結(jié)果為多少?
附:線性回歸方程中$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案