分析 整理方程可知,方程表示以點(1,0)為圓心,以1為半徑的圓,設$\frac{y}{x+1}$=k,進而根據圓心(1,0)到y(tǒng)=kx+k的距離為半徑時直線與圓相切,斜率取得最大、最小值,問題得以解決.
解答 解:方程x2+y2-2x=0即為(x-1)2+y2=1表示以點(1,0)為圓心,以1為半徑的圓.
設$\frac{y}{x+1}$=k,即y=kx+k,
由圓心(1,0)到y(tǒng)=kx+k的距離為半徑時直線與圓相切,斜率取得最大、最小值,
∴$\frac{|k+k|}{\sqrt{1+{k}^{2}}}$=1,
解得k=±$\frac{\sqrt{3}}{3}$,
∴$\frac{y}{x+1}$的最大值是$\frac{\sqrt{3}}{3}$,
故答案為:$\frac{\sqrt{3}}{3}$
點評 此題考查代數式的最大值的求法,是中檔題,解題時要注意直線與圓的位置關系,以及斜率的計算公式的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x2+3x | B. | y=(x-1)2 | C. | g(x)=2-x | D. | y=log0.5(x+1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{14}{3}$ | B. | $\frac{13}{3}$ | C. | 3 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | -1或2 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z | B. | [2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z | ||
C. | [kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$],k∈Z | D. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com