20.設f(x)是定義域為R,最小正周期為$\frac{3π}{2}$的函數(shù),若f(x)=$\left\{\begin{array}{l}cosx,({-\frac{π}{2}≤x<0})\\ sinx,({0≤x<π})\end{array}$,則$f({-\frac{14π}{3}})$的值為$\frac{\sqrt{3}}{2}$.

分析 先利用周期性將$f({-\frac{14π}{3}})$化成定義在區(qū)間(-$\frac{π}{2}$,0)上的函數(shù)值為f(-$\frac{π}{6}$)再代入解析式計算求解.

解答 解:$f({-\frac{14π}{3}})$=f(-$\frac{14π}{3}+3×\frac{3π}{2}$)=f(-$\frac{π}{6}$),
由于-$\frac{π}{2}$<-$\frac{π}{6}$<0,
所以$f({-\frac{14π}{3}})$=f(-$\frac{π}{6}$)=cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查分段函數(shù)求函數(shù)值,考查轉化、計算、分類能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.若直線x+y+m=0與圓x2+y2=m相離,則m取值范圍是m>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若函y=f (x)十f(2-x)-b,b∈R恰4個零,則b的取值范圍是( 。
A.($\frac{7}{4}$,+∞)B.(一∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)g(x)=2x-a(x≤2)的值域為(  )
A.(-∞,4-a]B.(0,4-a]C.[4-a,+∞)D.(-a,4-a]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.角α的終邊經過點P(-2sin60°,2cos30°),則sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知各項均為正數(shù)的等比數(shù)列{an}中,3a1,$\frac{1}{2}{a_3},2{a_2}$成等差數(shù)列,則$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若關于x的不等式x2+|x+a|<2至少有一個正數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-2,2)B.(-2,$\frac{9}{4}$)C.(-$\frac{9}{4}$,$\frac{9}{4}$)D.$(-\frac{9}{4},2)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2b-1}{x}+b+3,x>1}\\{-{x}^{2}+(2-b)x,x≤1}\end{array}\right.$在x∈R內滿足:對于任意的實數(shù)x1≠x2,都有(x1-x2)(f(x1)-f(x2))>0成立,則實數(shù)b的取值范圍為[-$\frac{1}{4}$,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.四棱柱ABCD-A1B1C1D1的三視圖如圖所示,E、F分別為A1B1、CC1的中點.
(1)求證:EF∥平面A1BC;
(2)求D1到平面A1BC的距離.

查看答案和解析>>

同步練習冊答案