分析 (1)先求出基本事件總數(shù),該顧客中獎的對立事件是某顧客從6張沒有獎獎券中任抽2張,由此利用對立事件概率計算公式能求出該顧客中獎的概率.
(2)由題意得X的所有可能取值為0,10,20,50,60(元),分別求出相應(yīng)的概率,由此能求出X的分布列和P(5≤X≤25).
解答 解:(1)∵某10張券中有一等獎獎券1張,可獲價值50元的獎品,有二等獎獎券3張,每張可獲價值10元的獎品;
其余6張沒有獎.某顧客從此10張獎券中任抽2張,
∴基本事件總數(shù)為n=${C}_{10}^{2}$=45,
該顧客中獎的對立事件是某顧客從6張沒有獎獎券中任抽2張,
∴該顧客中獎的概率p=$1-\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{2}{3}$.
(2)由題意得X的所有可能取值為0,10,20,50,60(元),
P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=10)=$\frac{{C}_{3}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{2}{5}$,
P(X=20)=$\frac{{C}_{3}^{2}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
P(X=50)=$\frac{{C}_{1}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{2}{15}$,
P(X=60)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
故X的分布列:
X | 0 | 10 | 20 | 50 | 60 |
P | $\frac{1}{3}$ | $\frac{2}{5}$ | $\frac{1}{15}$ | $\frac{2}{15}$ | $\frac{1}{15}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com