5.在一次購物抽獎活動中,假設(shè)某10張券中有一等獎獎券1張,可獲價值50元的獎品,有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張獎券中任抽2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值ξ(元)的概率分布,并求出P(5≤ξ≤25)的值.

分析 (1)先求出基本事件總數(shù),該顧客中獎的對立事件是某顧客從6張沒有獎獎券中任抽2張,由此利用對立事件概率計算公式能求出該顧客中獎的概率.
(2)由題意得X的所有可能取值為0,10,20,50,60(元),分別求出相應(yīng)的概率,由此能求出X的分布列和P(5≤X≤25).

解答 解:(1)∵某10張券中有一等獎獎券1張,可獲價值50元的獎品,有二等獎獎券3張,每張可獲價值10元的獎品;
其余6張沒有獎.某顧客從此10張獎券中任抽2張,
∴基本事件總數(shù)為n=${C}_{10}^{2}$=45,
該顧客中獎的對立事件是某顧客從6張沒有獎獎券中任抽2張,
∴該顧客中獎的概率p=$1-\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{2}{3}$.
(2)由題意得X的所有可能取值為0,10,20,50,60(元),
P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=10)=$\frac{{C}_{3}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{2}{5}$,
P(X=20)=$\frac{{C}_{3}^{2}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
P(X=50)=$\frac{{C}_{1}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{2}{15}$,
P(X=60)=$\frac{{C}_{1}^{1}{C}_{3}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
故X的分布列:

 X 0 10 20 50 60
 P $\frac{1}{3}$ $\frac{2}{5}$ $\frac{1}{15}$ $\frac{2}{15}$ $\frac{1}{15}$
∴P(5≤X≤25)=P(X=10)+P(X=20)=$\frac{2}{5}+\frac{1}{15}$=$\frac{7}{15}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等差數(shù)列{an}中,前m(m為奇數(shù))項的和為77,其中偶數(shù)項之和為33,且a1-am=18,則數(shù)列{an}的通項公式為an=-3n+23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計算:(2x+3y)(2x-3y)(16x4+36x2y2+81y4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)=-f(x+$\frac{3}{2}$),且f(-2)=f(-1)=-1,f(0)=2,則f(1)+f(2)+f(3)+…+f(2008)+f(2009)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知i為虛數(shù)單位,則$\sum_{r=2}^{11}$(1+i)r=-2+64i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(α,sinB+sinC),$\overrightarrow{n}$=(sinA,b-c)且$\overrightarrow{m}$$•\overrightarrow{n}$=bsinA
(1)求角C;
(2)若c=$\sqrt{3}$,求a+2b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.奇函數(shù)f(x)=Acos(ωx+φ)(A≠0,ω>0,0≤φ≤π)的圖象向右平移$\frac{π}{4}$個單位得到的圖象關(guān)于y軸對稱,則ω的值可以為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求證:1+$\frac{2sinαcosα}{1+sinα+cosα}$=$\frac{si{n}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項數(shù)列{an}滿足:a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$.
(Ⅰ)求通項an;
(Ⅱ)若數(shù)列{bn}滿足bn•an=3(1-$\frac{1}{{2}^{n}}$),求bn的最小值及此時n的值.

查看答案和解析>>

同步練習(xí)冊答案