11.甲、乙兩位同學(xué)玩“套圈”游戲:距離目標(biāo)2m,輪流對(duì)同一目標(biāo)進(jìn)行投圈,誰(shuí)先套住目標(biāo)誰(shuí)獲勝,已知甲、乙各自套中的概率分別為0.6和0.7,甲先投,求甲恰好套完第三個(gè)圈后獲勝的概率.

分析 問(wèn)題轉(zhuǎn)化為甲乙兩人前2次都沒(méi)套中且甲第三次套中,由獨(dú)立事件概率的乘法公式可得.

解答 解:由題意可得甲、乙兩位同學(xué)投中與否相互獨(dú)立,
甲恰好套完第三個(gè)圈后獲勝即甲乙兩人前2次都沒(méi)套中且甲第三次套中,
故所求概率P=(1-0.6)×(1-0.6)×(1-0.7)×(1-0.7)×0.6=0.00864

點(diǎn)評(píng) 本題考查相互獨(dú)立事件的概率的乘法公式,得出甲乙兩人前2次都沒(méi)套中且甲第三次套中是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函數(shù)y=f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的最值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿(mǎn)足c=$\sqrt{3}$,f(C)=1且sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知l是直線(xiàn),α、β是兩個(gè)不同的平面,下列命題中的真命題是④.(填所有真命題的序號(hào))
①若l∥α,l∥β,則α∥β      ②若α⊥β,l∥α,則l⊥β
③若l∥α,α∥β,則l∥β      ④若l⊥α,l∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}滿(mǎn)足:a1=a(a∈R且a>-1),(a1+1)(a2+1)…(an+1)=10${\;}^{{2}^{n}}$-1(n∈N*且n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)a=9時(shí),記cn=$\frac{1+lg[({a}_{1}+1)({a}_{2}+1)…({a}_{n}+1)]}{[lg({a}_{n+1}+1)-1]•[lg({a}_{n+2}+1)-1]}$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.2015年7月31日,國(guó)際奧委會(huì)在吉隆坡正式宣布2022年奧林匹克冬季奧運(yùn)會(huì)(簡(jiǎn)稱(chēng)冬奧會(huì))在北京和張家口兩個(gè)城市舉辦.某中學(xué)為了普及奧運(yùn)會(huì)知識(shí),舉行了一次奧運(yùn)知識(shí)競(jìng)賽.隨機(jī)抽取了30名學(xué)生的成績(jī),繪成如圖所示的莖葉圖,若規(guī)定成績(jī)?cè)?5分以上(包括75分)的學(xué)生定義為甲組,成績(jī)?cè)?5分以下(不包括75分)定義為乙組.
(1)求甲組學(xué)生的平均分;
(2)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問(wèn)有沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān);
(3)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取3人,用ξ表示所選3人中甲組的人數(shù),試寫(xiě)出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.解關(guān)于x的不等式(ax-a2-1)(x-2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知線(xiàn)段AB的長(zhǎng)為2,動(dòng)點(diǎn)C滿(mǎn)足$\overrightarrow{CA}$•$\overrightarrow{CB}$=λ(λ為負(fù)常數(shù)),且點(diǎn)C總不在以點(diǎn)B為圓心,$\frac{1}{2}$為半徑的圓內(nèi),則實(shí)數(shù)λ的最大值是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將函數(shù)f(x)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)=sin2x的圖象,若對(duì)滿(mǎn)足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{3}$,則φ=( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直三棱柱ABC-A1B1C1中,CA=CB,AA1=$\sqrt{2}$AB,D是AB的中點(diǎn)
(1)求證:BC1∥平面A1CD;
(2)若點(diǎn)P在線(xiàn)段BB1上,且BP=$\frac{1}{4}$BB1,求證:AP⊥平面A1CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案