在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若sin2B-sin2C=
3
sinCsinA,a=2
3
c,則B=( 。
A、30°B、60°
C、120°D、150°
考點:正弦定理,余弦定理
專題:三角函數(shù)的求值,解三角形
分析:已知等式利用正弦定理化簡,將a=2
3
c代入表示出b,利用余弦定理表示出cosB,將表示出的b與a代入求出cosB的值,即可確定出B的度數(shù).
解答: 解:將sin2B-sin2C=
3
sinCsinA,
利用正弦定理化簡得:b2-c2=
3
ac,
把a=2
3
c代入得:b2-c2=6c2,即b=
7
c,
∴cosB=
a2+c2-b2
2ac
=
12c2+c2-7c2
4
3
c2
=
3
2
,
則B=30°.
故選:A.
點評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從某班50名學生的一次數(shù)學測試成績進行調(diào)查,發(fā)現(xiàn)其成績都在90到150之間,頻率分布直方圖如圖所示.
(1)直方圖中x的值為
 
;
(2)在這些學生中,成績在[110,150)內(nèi)的學生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的8個頂點中任取4個連接構成的三棱錐中,滿足任意一條棱都不與其表面垂直的三棱錐的個數(shù)(  )
A、22B、24C、26D、28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2cos
πx
3
(x≤2000)
2x-2010(x>2000)
,則f(f(2014))=( 。
A、
3
B、-
3
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足約束條件
3x-y≥2
x-2y≤-1
2x+y≤8
,則
x
y
的最小值為(  )
A、
1
2
B、
2
3
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則方程f(x)=log3|x|的解個數(shù)是(  )
A、9個B、2個
C、4 個D、6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=
1
2
+
1
2x+1
B、y=
1
2
-
1
2x+1
C、y=
1
2
+
1
2x-1
D、y=
1
2
-
1
2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一同學為研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性質(zhì),構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則AP+PF=f(x),請你參考這些信息,推知函數(shù)g(x)=4f(x)-9的零點的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設D、E分別是線段BC、CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結論.

查看答案和解析>>

同步練習冊答案