17.對于R上可導(dǎo)的函數(shù)f(x),若a>b>1,且有(x-1)f′(x)>0則必有( 。
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

分析 由不等式,得出f(x)的單調(diào)性,由單調(diào)性,得出f(a),f(b),f(1)的大小.

解答 解:由(x-1)f′(x)>0知
$\left\{\begin{array}{l}{x-1>0}\\{f′(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-1<0}\\{f′(x)<0}\end{array}\right.$
∴x>1時,f(x)單調(diào)遞增
x<1時,f(x)單調(diào)遞減,
∵a>b>1
∴f(a)>f(b)>f(1)
∴f(a)+f(b)>2f(1)
故選D

點評 本題考查不等式的理解,由f(x)的單調(diào)性,可得出選項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)由下表給出,則f(2)=3.
x123
f(x)231

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)△ABC的重心為G,且|GB|+|GC|=4,若|BC|=2,則|GA|的取值范圍是$[2\sqrt{3},4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若x>0,則函數(shù)f(x)=4x+$\frac{2}{x}$的最小值是( 。
A.2$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若點M(0,3)與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)上任意一點P距離的最大值不超過2$\sqrt{7}$,求a的取值范圍是(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x,y)=(x-y)2+($\frac{x}{4}$+$\frac{1}{y}$)2(y≠0),則f(x,y)的最小值是$\frac{16}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)如圖所示.在△ABC中,射影定理可表示為a=b•cosC+c•cosB.其中a,b,c分別為角A,B,C的對邊,類比上述定理.寫出對空間四面體性質(zhì)的猜想.
(2)已知在Rt△ABC中.AB⊥AC,AD⊥BC于D,有$\frac{1}{AD^2}$=$\frac{1}{AB^2}$+$\frac{1}{AC^2}$成立.那么在四面體A一BCD中,類比上述結(jié)論,你能得怎樣的猜想,說明猜想是否正確并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將由曲線y=cosx,直線x=0,x=π,y=0所圍成圖形的面積寫成定積分的形式為( 。
A.${∫}_{0}^{π}$cosxdxB.${∫}_{0}^{\frac{π}{2}}$cosxdx+|${∫}_{\frac{π}{2}}^{π}$cosxdx|
C.${∫}_{0}^{π}$2sinxdxD.${∫}_{0}^{π}$2|cosx|dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα=3,分別求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2;
(4)2sin2α+sinαcosα-3cos2α.

查看答案和解析>>

同步練習(xí)冊答案