5.若x>0,則函數(shù)f(x)=4x+$\frac{2}{x}$的最小值是(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{2}$D.8$\sqrt{2}$

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,則函數(shù)f(x)=4x+$\frac{2}{x}$≥2×$2\sqrt{2x•\frac{1}{x}}$=4$\sqrt{2}$,當(dāng)且僅當(dāng)x=$\frac{\sqrt{2}}{2}$時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為${S_n},{a_1}=-\frac{1}{2},{S_n}=-\frac{1}{{{S_{n-1}}+2}}({n≥2})$
(1)計(jì)算S1,S2,S3,S4;
(2)猜想Sn的表達(dá)式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,則f(2010)+f(2012)=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=ex(x2-4x+1).求:
(1)函數(shù)的極值、單調(diào)區(qū)間;
(2)函數(shù)在閉區(qū)間[-2,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別
是否需要志愿者
總計(jì)
需要30
不需要160
總計(jì)200500
(Ⅰ)完成以上2×2列聯(lián)表,并估計(jì)該地區(qū)老年人中需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān).
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{\sqrt{6}}{3}$.
(1)若$\frac{2{a}^{2}}{c}$=3$\sqrt{2}$,求橢圓方程;
(2)直線l過點(diǎn)C(-1,0)交橢圓于A、B兩點(diǎn),且滿足:$\overrightarrow{CA}$=3$\overrightarrow{BC}$,試求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對(duì)于R上可導(dǎo)的函數(shù)f(x),若a>b>1,且有(x-1)f′(x)>0則必有( 。
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.O為△ABC的外心,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC為鈍角,M在BC上,且$\overrightarrow{BM}$=2$\overrightarrow{MC}$,則$\overrightarrow{AM}$$•\overrightarrow{AO}$的值是(  )
A.4B.$\frac{14}{3}$C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)f(x)=cos(x+$\frac{π}{3}$)的圖象上點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,得到的圖象的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{3}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{2}$,0)D.(-$\frac{π}{3}$,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案