20.在△ABC中,內(nèi)角A,B,C的所對邊分別為a,b,c.已知a2+b2+5abcosC=0,sin2C=$\frac{7}{2}$sinAsinB.
(Ⅰ)求角C的大;
(Ⅱ)若a=1,求△ABC面積的值.

分析 (Ⅰ)由題意及余弦定理化簡可得7(a2+b2)=5c2,利用正弦定理化簡已知可得${c^2}=\frac{7}{2}ab$,根據(jù)余弦定理可求cosC,結(jié)合范圍C∈(0,π),即可求得C的值.
(Ⅱ)a=1,由$\left\{\begin{array}{l}{c^2}=\frac{7}{2}b\\ 5{c^2}=7+7{b^2}\end{array}\right.$,解得b的值,利用三角形面積公式即可得解.

解答 (本題滿分為15分)
解:(Ⅰ)由題意及余弦定理得,${a^2}+{b^2}+5ab\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=0$,
即7(a2+b2)=5c2.…(2分)
由題意及正弦定理得,${c^2}=\frac{7}{2}ab$.…(4分)
故$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{-\frac{2}{7}{c^2}}}{2ab}=-\frac{1}{2}$.…(6分)
因為C∈(0,π),所以$∠C=\frac{2π}{3}$.…(7分)
(Ⅱ)因為a=1,由(Ⅰ)知,$\left\{\begin{array}{l}{c^2}=\frac{7}{2}b\\ 5{c^2}=7+7{b^2}\end{array}\right.$,解得b=1或b=2.…(10分)
①當b=1時,${S_{△ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}$;…(12分)
②當b=2時,${S_{△ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$.…(14分)
綜上,△ABC的面積為$\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{2}$.…(15分)

點評 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.10名同學(xué)分兩組,一組7人,一組3人,不同的分法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,則∫${\;}_{\frac{π}{3}}^{π}$f(x)dx的值為( 。
A.2-$\sqrt{3}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.運行如圖所示的程序框圖,若輸出的結(jié)果為$\frac{1}{63}$,則判斷框中應(yīng)填入的條件是( 。
A.i>4?B.i<4?C.i>5?D.i<5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖四棱錐P-ABCD,三角形ABC為正三角形,邊長為2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O為AC的中點,PO=1.
(1)證明PA⊥BO;
(2)證明DO∥平面PAB;
(3)平面PAB與平面PCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.曲線y=1+$\sqrt{4-{x^2}}$(|x|≤2)與直線y=k(x-2)+4只有一個公共點時,實數(shù)k的取值范圍是$k=\frac{5}{12}或k>\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a$|=|$\overrightarrow b$|=$\overrightarrow a$•$\overrightarrow b$=2且($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)=0,則|2$\overrightarrow b$-$\overrightarrow c$|的最大值為$\sqrt{7}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某教師一天上3個班級的課,每班一節(jié),如果一天共8節(jié)課,上午5節(jié)、下午3節(jié),并且教師不能連上3節(jié)課(第5和第6節(jié)不算連上),那么這位教師一天的課的所有排法有(  )
A.474種B.312種C.462種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列敘述中,正確的個數(shù)是(  )
①命題p:“?x0∈R,x${\;}_{0}^{2}$-2≥0”的否定為¬p:“?x∈R,x2-2<0”;
②“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要條件;
③命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”
④若p∨q為假命題,則¬p為真命題.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案